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ON THE MAXIMAL PART IN UNREFINABLE PARTITIONS OF

TRIANGULAR NUMBERS

RICCARDO ARAGONA1, LORENZO CAMPIONI1, ROBERTO CIVINO1 AND MASSIMO LAURIA2

Abstract. A partition into distinct parts is refinable if one of its parts a can be replaced
by two different integers which do not belong to the partition and whose sum is a, and it is
unrefinable otherwise. Clearly, the condition of being unrefinable imposes on the partition
a non-trivial limitation on the size of the largest part and on the possible distributions
of the parts. We prove a O(n1/2)-upper bound for the largest part in an unrefinable
partition of n, and we call maximal those which reach the bound. We show a complete
classification of maximal unrefinable partitions for triangular numbers, proving that if n
is even there exists only one maximal unrefinable partition of n(n + 1)/2, and that if n is
odd the number of such partitions equals the number of partitions of ⌈n/2⌉ into distinct
parts. In the second case, an explicit bijection is provided.

1. Introduction

Integer partitions into distinct parts may appear in several areas of mathematics, some-
times unexpectedly. For example, they have been recently shown to be linked to the set
of generators of groups in a group-theoretical problem related to cryptography [ACGS19,
ACGS21a]. In particular, Aragona et al. showed that the generators of a given group are
linked to partitions into distinct parts which satisfy a condition of non-refinability [ACGS21b]
together with a condition on the minimal excludant. This motivates us to investigate some
combinatorial aspects of unrefinable partitions, i.e. those in which no part can be written as
the sum of two different integers which do not belong to the partition, which to our knowl-
edge have not been investigated so far (cf. the On-Line Encyclopedia of Integer Sequences
for the first values [OEI, https://oeis.org/A179009]).

Computational results suggest that the maximal part in an unrefinable partition of n is
approximatively

√
n. In this paper, we first prove a matching upper bound for the maximal

part and then we define maximal unrefinable partitions as those which reach the bound. As a
main contribution, we provide a complete classification of maximal unrefinable partitions for
triangular numbers. We constructively prove, denoting by Tn the n-th triangular number,
that for even n there exists exactly one maximal unrefinable partition of Tn. For odd n, we
obtain a lower bound for the minimal excludant for the maximal unrefinable partitions of Tn,
defined to be the least integers which is not a part [FP15] and which has been investigated
also recently by other authors [AN19, HSS22]. The knowledge of a bound on the minimal
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excludant, among other considerations, allows us to show an explicit bijection between the
set of the maximal unrefinable partitions of Tn and the set of partitions of ⌈n/2⌉ into distinct
parts in the classic sense [And76].

The remainder of the paper is organized as follows: in Sec. 2 we introduce the notation
and define unrefinable partitions. In Sec. 3 we prove two upper bounds for the maximal part
in an unrefinable partition of n, distinguishing the case when n is a triangular number and
when is not. The classification theorem, i.e. Theorem 4.1, is proved in Sec. 4, which also
contains the result on triangular numbers of an even number. The odd case is developed
in Sec 5, which concludes the paper. In particular, we show in Theorem 5.11 a bijective
proof that number of maximal unrefinable partitions of Tn equals the number of partitions
of ⌈n/2⌉ into distinct parts.

2. Preliminaries

Let N ∈ N. A partition of N is a finite sequence λ = (λ1, λ2, . . . , λt) of positive integers

such that λ1 ≤ λ2 ≤ · · · ≤ λt and
∑t

i=1 λi = N . When λ is partition of N we write λ ⊢ N .
Each λi is called a part of the partition λ and we call λt its maximal part. We denote by

(λ1, λ2, . . . , λi−1, λ̂i, λi+1, . . . , λt) the partition (λ1, λ2, . . . , λi−1, λi+1, . . . , λt) where the part
λi is removed.

The partition λ = (λ1, λ2, . . . , λt) is a partition into distinct parts if λ1 < λ2 < · · · < λt

and t ≥ 2, i.e. if each part appears exactly once. The set DN denotes the set of all the
partitions of N into distinct parts. If λ = (λ1, λ2, . . . , λt) ∈ DN , the integers belonging to

Mλ
def

= {1, 2, . . . , λt} \ {λ1, λ2, . . . , λt}
are called the missing parts of λ, and are denoted by µ1 < µ2 < · · · < µm, for some m ≥ 0.
The least integer which is not a part of λ, i.e. µ1, is the minimal excludant of λ [FP15]. We
denote this by writing µ1 = mex(λ), taking mex(λ) = 0 when Mλ = ∅ as it is customary in
literature.

Definition 2.1. Let N ∈ N. Let λ = (λ1, λ2, . . . , λt) be a partition of N into distinct parts
and let µ1 < µ2 < · · · < µm be its missing parts. The partition λ is refinable if there exist
1 ≤ ℓ ≤ t and 1 ≤ i < j ≤ m such that µi + µj = λℓ, and unrefinable otherwise. The set of
unrefinable partitions is denoted by U, and by UN we denote those whose sum of the parts
is N .

Definition 2.2. Let n ∈ N. We denote by Tn the n-th triangular number, i.e.

Tn
def

=
n∑

i=1

i =
n(n + 1)

2
.

The complete partition πn
def

= (1, 2, . . . , n) is the partition of Tn with no missing parts.

Notice that every complete partition is unrefinable. The same holds, by definition, for
partitions with a single missing part. In particular, if N = Tn for some n, then πn is an
unrefinable partition of N . Otherwise, if n is the least integer such that N < T (n), then

πn,d
def

= (1, 2, . . . , d − 1, d̂, d + 1, . . . , n) (1)

is an unrefinable partition of N , where d = Tn − N . In general, the admissible number of
missing parts in an unrefinable partition is bounded as in the following result.
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Lemma 2.3. Let λ = (λ1, λ2, . . . , λt) be unrefinable and let µ1 < µ2 < · · · < µm be the
missing parts. Then the number of missing parts m is bounded by

m ≤
⌊

λt

2

⌋
. (2)

Proof. Let us start by observing that λt − µi ∈ λ for 1 ≤ i ≤ m, otherwise from λt −
µi, µi ∈ Mλ we obtain (λt − µi) + µi = λt ∈ λ and thus λ is refinable. We prove the claim
considering the complete partition πλt

and removing from this the maximum number of
parts different from λt. For the previous observation, each candidate part µi to be removed
has a counterpart λt − µi in the partition. The bound of Eq. (2) depends on the fact that
this process can be repeated no more than ⌊λt/2⌋ times. �

As already anticipated, our focus is on the maximal part in a partition as in Definition 2.1.
In the next section, using Lemma 2.3, we show that the maximal part in an unrefinable
partition of n is O(n1/2).

3. Upper bounds on the maximal part

It is easy to check that the complete partitions π1, π2, . . . , π5 are the only unrefinable
partitions for the triangular numbers T1, T2, . . . , T5 respectively. In the general case of Tn

for n ≥ 6, this is not true. For example, the partition (1, 2, 3, 7, 8) ⊢ 21 = T6 is unrefinable.
As a more complex example, in case of T9 we can calculate that

(1, 2, 3, 4, 5, 6, 7, 8, 9) (1, 2, 3, 5, 6, 7, 10, 11)

(1, 2, 3, 4, 6, 8, 10, 11) (1, 2, 3, 4, 5, 9, 10, 11)

(1, 2, 3, 4, 6, 7, 10, 12) (1, 2, 3, 4, 5, 8, 10, 12)

(1, 2, 3, 4, 5, 7, 11, 12) (1, 2, 3, 4, 5, 7, 10, 13)

(1, 2, 3, 4, 5, 6, 11, 13) (1, 2, 3, 4, 5, 6, 10, 14)

(1, 2, 4, 5, 8, 11, 14)

are all the unrefinable partitions of 45 = T9.
It is clear that the property of being unrefinable imposes on one side an upper limitation

on the size of the largest part which is admissible in the partition, and on the other a lower
limitation on the minimal excludant. We address in this section the natural question of
determining what is the maximal part in an unrefinable partition of N . In the case where
N is a triangular number the following result provides an answer. The notation introduced
in the proof will be used throughout all the paper.

Proposition 3.1. Let n ∈ N and N = Tn. For every λ = (λ1, λ2, . . . , λt) unrefinable
partition of N we have

n ≤ λt ≤ 2n − 4. (3)

Equivalently, √
1 + 8N − 1

2
≤ λt ≤

√
1 + 8N − 5.

Proof. Let us start considering the complete partition πn ⊢ N . Other unrefinable partitions
of N are obtained from πn by removing some parts smaller or equal than n and replacing
them with parts larger than n. Hence, the lower bound for the maximal part in any partition
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of N is n, obtained when no part is removed. Since N = n(n + 1)/2, then n is the positive
solution of n2 + n − 2N = 0 and so we have

λt ≥
√

1 + 8N − 1

2
.

Let h, j ∈ N and let us denote by 1 ≤ a1 < a2 < · · · < ah ≤ n the candidate parts to be
removed from πn to obtain a new unrefinable partition of N , and by n + 1 ≤ α1 < α2 <
· · · < αj the corresponding replacements. Since

∑
ai =

∑
αi we have h > j. Moreover

j > 1, otherwise from
∑

ai = α1 the obtained partition is refinable. Hence we obtain

h ≥ 3, j ≥ 2, and h > j .

There are h missing parts in the interval {1, 2, . . . , n} and exactly j parts appear in the
interval {n + 1, n + 2, . . . , αj}. Therefore the number of missing parts of λ is

m = h + αj − n − j.

To prove αj ≤ 2n − 4 we consider the cases where αj is either equal to 2n − 3, equal to
2n − 2, or strictly larger than 2n − 2. We derive a contradiction in each case. Let us observe
that

h∑

i=1

ai ≤ n + (n − 1) + · · · + (n − (h − 1)) = hn − (h − 1)h

2
.

In the case αj = 2n − 3 we obtain m = h + n − 3 − j. By Lemma 2.3, we have m ≤
⌊αj/2⌋ = n − 2, hence h ≤ j + 1, and so h = j + 1. Notice that

α1 + · · · + αj > (j − 1)n + 2n − 3 = (j + 1)n − 3 = hn − 3.

Therefore, since
∑

ai =
∑

αi, we have

3 >
(h − 1)h

2
,

which is satisfied if h < 3, a contradiction.
In the case αj = 2n − 2 we obtain m = h + n − 2 − j. By Lemma 2.3, we have m ≤

⌊αj/2⌋ = n − 1, hence h ≤ j + 1, and so again h = j + 1. Notice that

α1 + · · · + αj > (j − 1)n + 2n − 2 = (j + 1)n − 2 = hn − 2.

Therefore, since
∑

αi =
∑

ai, we have

2 >
(h − 1)h

2
,

which is satisfied if h < (1 +
√

17)/2 < 3, a contradiction.
To conclude we consider the last case αj > 2n − 2. We have n − 1 < αj/2 and so

αj − (n − 1) >
αj

2
≥
⌊αj

2

⌋
.

Hence, since h ≥ j + 1, we have

m = h + αj − n − j >
⌊αj

2

⌋
+ h − j − 1 ≥

⌊αj

2

⌋
,

which contradicts Lemma 2.3. �

Notice that the upper bound of Eq. 3 is tight. Indeed, let us define the following partition:

π̃n
def

= (1, 2, . . . , n − 3, n + 1, 2n − 4). (4)
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It is easy to notice that π̃n ⊢ N and that π̃n is unrefinable, since its least missing parts are
n−2 and n−1, and 2n−4 < (n−2)+(n−1). In the notation of the proof of Proposition 3.1,
π̃n is obtained in the case h = 3 and j = h − 1 = 2.

The counterpart of Proposition 3.1 in the case of non-triangular numbers is obtained in
a similar way.

Proposition 3.2. Let N ∈ N be such that Tn−1 < N < Tn for some n ∈ N. For every
λ = (λ1, λ2, . . . , λt) unrefinable partition of N we have

n ≤ λt ≤ 2n − 2. (5)

Equivalently, √
1 + 8(N + d) − 1

2
≤ λt ≤

√
1 + 8(N + d) − 3,

where d = Tn − N .

Proof. Let us start considering d and the partition πn,d ⊢ N as in Eq. (1). Other partitions
of N are obtained from πn,d by removing some parts smaller or equal than n which are
replaced by d and other parts larger than n or only by other parts larger than n. Proceeding
as in the proof of Proposition 3.1, let h, j ∈ N and let us denote by 1 ≤ a1 < a2 < · · · <
ah ≤ n the candidate parts to be removed from πn,d to obtain a new partition of N , and by
α1 < α2 < · · · < αj the corresponding replacements. Since

∑
ai =

∑
αi we have h ≥ j > 1,

and we may obtain h = j only if α1 = d. For this reason, we need do consider the two cases
separately.

Let us assume αi > n, for every 1 ≤ i ≤ j. Reasoning as in the proof of Proposition 3.1
we can count m = (h + 1) + αj − n − j. On the other hand, if α1 = d and αi > n for every
2 ≤ i ≤ j, then we obtain just h missing parts in the interval {1, 2, . . . , n} and exactly j − 1
parts appear in the interval {n + 1, n + 2, . . . , αj}, therefore we obtain the same formula for
number of missing parts m = h + αj − n − (j − 1). By Lemma 2.3 we obtain

h +
⌈αj

2

⌉
− n − j + 1 ≤ 0. (6)

If αj > 2n − 2, then ⌈αj/2⌉ ≥ n and from Eq. (6) we obtain h ≤ j − 1, a contradiction. �

Remark 1. Notice that the bound of Eq. (5) is reached by the partition (1, 2, . . . , n − 2, 2n −
2) ⊢ Tn − 1 constructed from πn,1 = (2, 3, . . . , n).

We now introduce maximal unrefinable partitions, the main subject of this work, as those

partitions λ = (λ1, λ2, . . . , λt) ∈ ŨN whose λt is maximal.

Definition 3.3. Let N ∈ N. An unrefinable partition λ = (λ1, λ2, . . . , λt) of N is called
maximal if

λt = max
(λ′

1
,λ′

2
,...,λ′

t
)∈UN

λ′
t

We denote by ŨN the set of the maximal unrefinable partitions of N .

In the case of triangular numbers N = Tn for some n ≥ 6, by virtue of Proposition 3.1,

we have that λ = (λ1, λ2, . . . , λt) ∈ ŨN is maximal if and only if λt = 2n − 4.

Remark 2. As already observed in the proof of Proposition 3.1, for each λ ∈ U there exist
1 < j < h, 1 ≤ a1 < a2 < · · · < ah ≤ n and α1, α2, . . . , αj ≥ n + 1 such that λ is obtained
from πn by removing the parts ais which are replaced by the parts αis. Consequently,

#ŨN coincides with the number of choices which lead to partitions meeting the mentioned
conditions and, in addition, the condition λt = 2n − 4. In the remainder of the work, when
λ ∈ U we will refer to ais, αis, j and h as intended here.
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4. Classification of maximal unrefinable partitions of triangular numbers

We are now ready to prove our first main contribution. Using arguments similar to those
of the proofs in the previous section, we classify maximal unrefinable partitions for triangular
numbers.

Theorem 4.1. Let n ∈ N, n ≥ 6, and N = Tn. Then

(1) if n is even, then ŨN = {π̃n};

(2) if n is odd, then π̃n ∈ ŨN and the other partitions λ ∈ ŨN , λ 6= π̃n, are such that
j = h − 2 and the following conditions hold:
(i) the removed parts a1, . . . , ah−3 are replaced by 2n − 4 − a1, 2n − 4 − a2, . . . , 2n −

4 − ah−3, and
(ii) the triple (ah−2, ah−1, ah) is one of the following

(n − 4, n − 3, n − 2), (n − 4, n − 2, n − 1), (n − 3, n − 2, n), (n − 2, n − 1, n).

Proof. Let λ ∈ ŨN and let a1, a2, . . . , ah and α1, α2, . . . , αj = 2n − 4 as in Remark 2. We
already know that h ≥ 3. From the hyphotheses on λ we have that

m = h + αj − n − j = h + n − 4 − j.

By Lemma 2.3 we have h − j ≤ 2, and, since h > j, we obtain j ∈ {h − 1, h − 2}. Notice that

if a ∈ {a1, . . . , ah} is such that a < n−4, then α
def

= 2n−4−a must belong to {α1, . . . , αj−1},
otherwise α + a = 2n − 4 = αj ∈ λ, and so λ is refinable. Then each removed part ai such
that ai < n − 4 is in one-to-one correspondence to its replacement which, for the sake of
simplicity, we will denote from now on by αi. On the other side, for the same symmetry
argument, each part in the interval {n−4, . . . , n} has no replacement. In such an interval we
may choose at most 5 parts. However, we are not allowed to remove, at the same time, parts
from one of the pairs (n − 4, n) and (n − 3, n − 1) without contradicting the unrefinability of
λ. Analogously, we are not allowed to remove more than three parts. Moreover, we cannot
choose to pick only one part to be removed in that interval, otherwise we would obtain h − 1
replacements but at most j − 1 are allowed, and h > j.

We are left to consider the cases of two or three parts to be removed in the interval
{n − 4, . . . , n}, both with the assumptions j = h − 1 or j = h − 2. In particular, we will show
that in both setting of j, there exists no maximal partition with two removed parts in the
selected interval. Moreover, in the case j = h − 1 and three removed parts, we show that
the only admissible partition is π̃n. Finally, partitions from the case j = h − 2 and three
removed parts are only possible for odd n as claimed in (2). Let us address each of the four
cases separately.

Let us suppose j = h − 1 and 1 ≤ a1 < a2 < · · · < ah−2 ≤ n − 5 and n − 4 ≤ ah−1 <
ah ≤ n. For each 1 ≤ i ≤ j − 1 = h − 2 we have αi = αj − ai. We will now show
that this configuration leads to a contradiction. To do this, we estimate

∑
ai and

∑
αi

from above and from below, respectively. This is clearly accomplished by noticing that
αh−2 ≥ n + 1, αh−3 ≥ n + 2, . . . , α1 ≥ n + h − 2 and ah ≤ n, ah−1 ≤ n − 1, obtaining
ah−2 ≤ αj − αh−2 ≤ n − 5, ah−3 ≤ n − 6, . . . , a1 ≤ n − h − 2. Hence

h∑

i=1

ai ≤ hn −
h+2∑

i=1

i + 2 + 3 + 4 = hn − h2 + 5h + 6

2
+ 9, and

j∑

i=1

αi ≥ hn +

h−2∑

i=1

i − 4 = hn +
h2 − 3h + 2

2
− 4.



ON THE MAXIMAL PART IN UNREFINABLE PARTITIONS OF TRIANGULAR NUMBERS 7

For
∑

ai =
∑

αi we obtain an inequality which is satisfied for h < 3 , which is a contradic-
tion.

In the second case, i.e. j = h − 1, and 1 ≤ a1 < a2 < · · · < ah−3 ≤ n − 5, n − 4 ≤ ah−2 <
ah−1 < ah ≤ n, we have αi = αj − ai for every 1 ≤ i ≤ h − 3 = j − 2. Notice that, in this
case, the part αj−1 = αh−2 is not determined by one of the ais. Proceeding as before, since
αh−3 ≥ n + 1, αh−4 ≥ n + 2, . . . , α1 ≥ n + h − 3, αh−2 ≥ n + h − 2 and ah ≤ n, ah−1 ≤
n−1, ah−2 ≤ n−2, we determine ah−3 ≤ αj −αh−3 ≤ n−5, ah−4 ≤ n−6, . . . , a1 ≤ n−h−1
and we obtain the bounds

∑
ai ≤ hn −

h+1∑

i=1

i + 3 + 4 = hn − h2 + 3h + 2

2
+ 7, and

∑
αi ≥ hn +

h−2∑

i=1

i − 4 = hn +
h2 − 3h + 2

2
− 4.

From
∑

ai =
∑

αi we obtain an inequality which is satisfied only for h = 3, which corre-
sponds to the partition (cf. also Eq. (4))

(1, 2, . . . , n − 3, n + 1, 2n − 4) = π̃n ∈ ŨN .

The third case j = h − 2 with two removed parts is immediately contradictory, since the
parts a1, a2, . . . , ah−2 determine h − 2 = j replacements but at most j − 1 are possible.

The last case to be considered is the one where j = h − 2 and the three largest parts ais
are chosen in the interval {n − 4, . . . , n}. As already observed, since λ is unrefinable, the
only possible choices are

(ah−2, ah−1, ah) ∈ {(n−4, n−3, n−2), (n−4, n−2, n−1), (n−3, n−2, n), (n−2, n−1, n)},

which means ah−2 + ah−1 + ah ∈ {3n − 9, 3n − 7, 3n − 5, 3n − 3}. From
∑

ai =
∑

αi we
obtain

a1 + a2 + · · · + ah = (αh−2 − a1) + (αh−2 − a2) + · · · + (αh−2 − αh−3) + αh−2

and so, since αh−2 = αj = 2n − 4,

2(a1 + a2 + · · · + ah−3) + (ah−2 + ah−1 + ah) = (h − 2)(2n − 4). (7)

Since the right side of Eq. (7) is even and ah−2 + ah−1 + ah is even only if n is odd, then
Eq. (7) can be satisfied only in the case when n is odd. This proves (2) when n is odd and
that the partition π̃n of Eq. (4) is the only maximal unrefinable partition of Tn when n is
even, i.e. (1). �

From Theorem 4.1 we obtain that the description of maximal unrefinable partition for
the triangular number of an even number is completed. The odd case is addressed in the
following section.

Corollary 4.2. Let k ∈ N and N = T2k. Then #ŨN = 1.

5. Odd triangular numbers

Throughout all this last section, N will denote the triangular number of an odd number.
More precisely, let n = 2k − 1 ∈ N be such that N = Tn.

From Theorem 4.1 we have that the set of maximal unrefinable partitions of triangular
numbers of odd numbers can be partitioned in the following way

{π̃n | n odd } ∪̇ A ∪̇ B ∪̇ C ∪̇ D,
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where

A def

=
⋃

h≥4

Ah, B def

=
⋃

h≥4

Bh, C def

=
⋃

h≥4

Ch, D def

=
⋃

h≥4

Dh

and

Ah
def

=
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n − 4, n − 3, n − 2)},

Bh
def

=
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n − 4, n − 2, n − 1)},

Ch
def

=
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n − 3, n − 2, n)},

Dh
def

=
⋃

n odd

{λ | λ ∈ ŨTn
, (ah−2, ah−1, ah) = (n − 2, n − 1, n)}.

Each set Ah, Bh, Ch, Dh is called a class of maximal unrefinable partitions. If λ ∈ Ah (resp.
Bh, Ch or Dh) for some h we say that λ is a partition of class Ah (resp. Bh, Ch or Dh).

The following consideration is a trivial but important consequence of Theorem 4.1.

Corollary 5.1. Let n ∈ N and N = Tn. If λ = (λ1, λ2, . . . , λt) ∈ ŨN , then λi 6= n − 2 for
every 1 ≤ i ≤ t.

Remark 3 (Anti-symmetric property). From Theorem 4.1(2) and Corollary 5.1 we derive

that every partition λ ∈ ŨTn
, λ 6= π̃n, is anti-symmetric with respect to n − 2, i.e. for

1 ≤ a < 2n − 4 we have

a /∈ λ ⇐⇒ 2n − 4 − a ∈ λ,

provided that a 6= n − 2.

Example 5.2. Let us fix n = 13. In Tab. 1 we have displayed the three different partitions

of ŨT13
\ {π̃13}, where a black dot means that the corresponding integer is a part and the

white dot means otherwise. Disregarding the last part which is fixed to be 2n − 4 due to the
maximality constraint, the anti-symmetric property with respect to n−2 can be appreciated.
Notice also that min

λ∈ŨT13

mex(λ) = 5 = (n − 3)/2 and that (n − 2) − 5 + 1 = 7 = ⌈n/2⌉.

n − 2 n λt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
• • • • • • ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •
• • • • • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •
• • • • ◦ • • • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

Table 1. The anti-symmetric property shown on the partitions λ ∈ ŨT13
,

λ 6= π̃13.

Example 5.3. As another significative example, we show in Tab 2 all the partitions in

ŨT27
= Ũ378, classified according to the description of Theorem 4.1. It is important to notice

that, when h ≥ 5, partitions in the same class may appear with different multiplicities.
Here all the parts λis of the partitions are listed, divided in three areas 1 ≤ λi ≤ n − 5,
n − 4 ≤ λi ≤ n and n + 1 ≤ λi ≤ 2n − 4 naturally induced by Theorem 4.1. Notice again
that we have min

λ∈ŨT27

mex(λ) = 12 = (n − 3)/2.
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1 ≤ λi ≤ 22 23 ≤ λi ≤ 27 28 ≤ λi ≤ 50 class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 28 50 π̃27

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 26 27 36 50 A4

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 24 27 37 50 B4

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 26 38 50 C4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 26 27 30 31 50 A5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 22 26 27 29 32 50 A5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 26 27 28 33 50 A5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 22 24 27 30 32 50 B5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22 24 27 29 33 50 B5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 24 27 28 34 50 B5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 23 26 31 32 50 C5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 23 26 30 33 50 C5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 22 23 26 29 34 50 C5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 23 26 28 35 50 C5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 22 23 24 31 33 50 D5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 21 22 23 24 30 34 50 D5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 22 23 24 29 35 50 D5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 27 28 29 30 50 B6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 23 26 28 29 31 50 C6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 23 24 28 30 31 50 D6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 23 24 28 29 32 50 D6

Table 2. Maximal unrefinable partitions of 378 = T27 and the correspond-
ing classes.

5.1. Bounds for h and the minimal excludant. It is natural to wonder, recalling that
in general h ≥ 4, what is an upper bound for h in a maximal unrefinable partition λ ∈
ŨT2k−1

. The answer to this question is provided in Proposition 5.6, from which we also
derive the result on the lower bound for the minimal excludant in maximal unrefinable
partitions (cf. Corollary 5.9). Let us address before the two extremal cases h = 4 and h = 5.

Proposition 5.4. Let n ≥ 7 be odd. We have:

(1) ŨTn
∩ D4 = ∅,

(2) ŨT7
∩ C4 = ∅ and if n ≥ 9, then #(ŨTn

∩ C4) = 1,

(3) ŨT7
∩ B4 = ŨT9

∩ B4 = ∅ and if n ≥ 11, then #(ŨTn
∩ B4) = 1,

(4) ŨT7
∩ A4 = ŨT9

∩ A4 = ∅ and if n ≥ 11, then #(ŨTn
∩ A4) = 1.

Proof. Let λ ∈ ŨTn
be obtained by removing the integers a1, a2, a3, a4 and adding the

replacements α1 and α2 = 2n − 4, which need to satisfy the following conditions:

(i) 1 ≤ a1 ≤ n − 5,
(ii) n − 4 ≤ a2 < a3 < a4 ≤ n,
(iii) n + 1 ≤ α1 = 2n − 4 − a1,
(iv) a1 + a2 + a3 + a4 = α1 + α2.

By contradiction, let us assume that λ ∈ D4, and so a2 = n − 2, a3 = n − 1 and a4 = n.
From Eq. (iv) we obtain

a1 =
n − 5

2
and α1 =

3n − 3

2
.
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Notice that a1 +(n+1) = α1 and, by hypothesis, α1 ≥ n+1. If α1 = n+1, we obtain n = 5,
a contradiction. Otherwise, since (n + 1) /∈ λ, we obtain that λ is refinable. The claim (1)
is then proved.

Let us now address the case (2). Similarly as before, we now have a2 = n − 3, a3 = n − 2
and a4 = n and so we determine

a1 =
n − 3

2
and α1 =

3n − 5

2
.

Notice that from α1 ≥ n + 1 we obtain n ≥ 7. However, assuming n = 7 leads to a1 + a2 =
6 = n − 1 ∈ λ, a contradiction since λ is unrefinable. Let us now prove that the obtained
partition

λ
def

=

(
. . . ,

n̂ − 3

2
, . . . , n − 4, n − 1,

3n − 5

2
, 2n − 4

)

is unrefinable by showing that each possible sum ai +aj , with 1 ≤ i < j ≤ 4, is different from
α1. Recall that by the classification of Theorem 4.1 we have already ruled out those partitions
which contradict the unrefinability in 2n−4. Since n ≥ 9, we have that a1+a2 = (3n − 9)/2 >
n − 1. Consequently, every sum of missing parts is larger than n − 1 ∈ λ. Moreover,
a1 + a2 6= α1, a1 + a3 = (3n − 7)/2 6= α1, a1 + a4 = (3n − 3)/2 > α1, a2 + a3 = 2n − 5 > α1

and therefore a2 +a4, a3 +a4 > α1. Therefore λ ∈ C4 and it is unique by construction, which
proves the claim (2).

In the case of B4, we find

a1 =
n − 1

2
and α1 =

3n − 7

2
.

From α1 ≥ n + 1 we have n ≥ 9, and assuming n = 9 contradicts again the unrefinability;
therefore n ≥ 11. With arguments similar to those of previous case the partition(

. . . ,
n̂ − 1

2
, . . . , n − 5, n − 3, n,

3n − 7

2
, 2n − 4

)

is proved unrefinable and unique by construction, hence (3) is obtained.
Finally, considering the case of A4, we obtain

a1 =
n + 1

2
and α1 =

3n − 9

2
.

Now, α1 ≥ n + 1 implies n ≥ 11 and a1 + a2 = (3n − 7)/2 > α1. This proves that
(

. . . ,
n̂ + 1

2
, . . . , n − 5, n − 1, n,

3n − 9

2
, 2n − 4

)
∈ A4,

i.e. the claim (4). �

Proposition 5.5. Let n ≥ 7 be odd and k ≥ 0. We have:

(1) if n < 15, then ŨTn
∩ C5 = ∅ and if n ≥ 15, then #(ŨT15+2k

∩ C5) = ⌊k/2⌋ + 1,

(2) if n < 17, then ŨTn
∩ B5 = ∅ and if n ≥ 17, then #(Ũ17+2k ∩ B5) = ⌊k/2⌋ + 1,

(3) if n < 17, then ŨTn
∩ D5 = ∅ and if n ≥ 17, then #(Ũ17+2k ∩ D5) = ⌊k/2⌋ + 1,

(4) if n < 19, then ŨTn
∩ A5 = ∅ and if n ≥ 19, then #(Ũ19+2k ∩ A5) = ⌊k/2⌋ + 1.

Proof. Let us proceed as in the proof of Proposition 5.4. Let λ ∈ ŨTn
be obtained by

removing the integers a1, a2, . . . , a5 and adding the replacements α1, α2 and α3 = 2n − 4,
which need to satisfy the following conditions:

(i) 1 ≤ a1 < a2 ≤ n − 5,
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(ii) n − 4 ≤ a3 < a4 < a5 ≤ n,
(iii) n + 1 ≤ α2 = 2n − 4 − a2 < α1 = 2n − 4 − a1,
(iv) a1 + a2 + a3 + a4 + a5 = α1 + α2 + α3.

First, let us address the case (1). We have a3 = n − 3, a4 = n − 2 and a5 = n and, from
Eq. (iii) and Eq. (iv), a1 and a2 satisfy the condition

a1 + a2 =
3n − 7

2
. (8)

We first consider the case when a2 is maximal, i.e. a2 = n−5, in which we have a1 = (n+3)/2
and consequently α1 = (3n−11)/2 and α2 = n+1. Notice then that the condition of Eq. (8)
can be met in other ⌊(a2 − a1 − 1)/2⌋ ways by taking the first two parts to be removed as
a1 + i and a2 − i, for 1 ≤ i ≤ ⌊(a2 − a1 − 1)/2⌋. Now, from a1 < a2 we obtain n ≥ 15. If
n = 15, the partition

(
. . . ,

n̂ + 3

2
, . . . , n̂ − 5, n − 4, n − 1, n + 1,

3n − 11

2
, 2n − 4

)

is unique by construction and is unrefinable since a1 + a2 > α1. In the other cases, which
are ⌊

a2 − a1 − 1

2

⌋
=

⌊
n − 15

4

⌋
, (9)

we obtain an unrefinable partition since, letting α′
1 = 2n−4−(a1+i) and α′

2 = 2n−4−(a2−i),
we have

(a1 + i) + (a2 − i) = a1 + a2 > α1 > α′
1 > α′

2.

The claim (1) is then obtained writing n = 15 + 2k in Eq. (9).
The proofs for (2) and (4) are obtained in the same way. When n = 17, the partition

(
. . . ,

n̂ + 5

2
, . . . , n̂ − 5, n − 3, n, n + 1,

3n − 13

2
, 2n − 4

)
∈ B5

and is unique by construction, and when n > 17 it can be modified in ⌊(a2 − a1 − 1)/2⌋ =
⌊(n − 17)/4⌋ ways as in the proof of (1). Analogously, when n = 19 the partition

(
. . . ,

n̂ + 7

2
, . . . , n̂ − 5, n − 1, n, n + 1,

3n − 15

2
, 2n − 4

)
∈ A5

and is unique by construction, and when n > 19 it can be modified in ⌊(n − 19)/4⌋ ways.
It remains to be proved the slightly different case (3). In this case, we have a1 + a2 =

(3n − 9)/2 and, proceeding as above, from a2 = n − 5 we obtain a1 = (n + 1)/2 and
α1 = (3n − 9)/2. This leads to the contradiction a1 + a2 = α1. The argument of (1) is here
replicated starting from a2 = n − 6. It is now easy to see that, when n = 17, the partition

(
. . . ,

n̂ + 3

2
, . . . , n̂ − 6, . . . , n − 3, n + 2,

3n − 11

2
, 2n − 4

)
,

unique by construction, is unrefinable. When n > 17, it can be modified in ⌊(n − 17)/4⌋
ways, which proves (3). �

Proposition 5.6. Let n ≥ 7 be odd and h ≥ 6. We have

(1) ŨTn
∩ Dh 6= ∅ if and only if n ≥ h2 − h − 7,

(2) ŨTn
∩ Ch 6= ∅ if and only if n ≥ h2 − h − 5,

(3) ŨTn
∩ Bh 6= ∅ if and only if n ≥ h2 − h − 3,
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(4) ŨTn
∩ Ah 6= ∅ if and only if n ≥ h2 − h − 1.

Proof. We proceed as in Proposition 5.4 and Proposition 5.5, assuming the conditions

(i) 1 ≤ a1 < a2 < · · · < ah−3 ≤ n − 5,
(ii) n − 4 ≤ ah−2 < ah−1 < ah ≤ n,
(iii) n + 1 ≤ αh−3 = 2n − 4 − ah−3 < αh−4 = 2n − 4 − ah−4 < · · · < α1 = 2n − 4 − a1,
(iv)

∑
ai =

∑
αi.

If λ ∈ ŨTn
∩ Dh, then ah−2 + ah−1 + ah = 3n − 3 and therefore, from Eq. (iii) and Eq. (iv),

a1 + a2 + · · · + ah−3 =
(h − 2)(2n − 4) − (3n − 3)

2
=

(2h − 7)n + 11 − 4h

2
.

Let us now assume that ah−3 = n − 5, ah−4 = n − 6, . . . , a2 = n − h, i.e. let us maximize the
sum a2 + · · · + ah−3. We obtain

a2 + · · · + ah−3 = (h − 4)n −
h∑

i=5

i = (h − 4)n − h(h + 1)

2
+ 10,

from which we can calculate

a1 =
n + h2 − 3h − 9

2
.

Imposing a1 < a2 we obtain n > h2 − h − 9. In this setting, we have

α1 =
3n − h2 + 3h + 1

2
and a1 + a2 =

3n + h2 − 5h − 9

2
.

Notice that a1 + a2 > α1 is satisfied for h ≥ 6, hence the provided construction leads to a
partition λ which belongs to Dh if and only if n ≥ h2 − h − 7, i.e. (1).

The cases (2),(3) and (4) we proceed analogously, maximizing a2 +a3 + . . . ah−3, provided
that ah−2, ah−1, ah are modified accordingly. In particular, when considering Ch we have

a1 =
n + h2 − 3h − 7

2
and α1 =

3n − h2 + 3h − 1

2
.

From a1 < a2 we have n ≥ h2 − h − 5 and from

α1 < a1 + a2 =
3n + h2 − 5h − 7

2

we obtain λ ∈ Ch, i.e. the claim (2) follows.
In the case of Bh we have

a1 =
n + h2 − 3h − 5

2
and α1 =

3n − h2 + 3h − 3

2
.

From a1 < a2 we have n ≥ h2 − h − 3 and from

α1 < a1 + a2 =
3n + h2 − 5h − 5

2

we obtain λ ∈ Bh, i.e. the claim (3) is proved.
Finally, assuming the conditions of Ah we have

a1 =
n + h2 − 3h − 3

2
and α1 =

3n − h2 + 3h − 5

2
.

From a1 < a2 we have n ≥ h2 − h − 1 and from

α1 < a1 + a2 =
3n + h2 − 5h − 3

2

we obtain λ ∈ Ah, from which the desired result (4) follows. �
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By interchanging the role of n and h in the statements of Proposition 5.6, we obtain the
following description of the set of maximal unrefinable partitions of triangular numbers of
an odd number, where we can read the upper bound for h in each different class.

Corollary 5.7. Let n ≥ 7 be odd. Then

ŨTn
= {π̃n} ∪̇




⌊ 1+
√

29+4n

2
⌋⋃

h=5

Dh ∪̇
⌊ 1+

√
21+4n

2
⌋⋃

h=4

Ch ∪̇
⌊ 1+

√
13+4n

2
⌋⋃

h=4

Bh ∪̇
⌊ 1+

√
5+4n

2
⌋⋃

h=4

Ah


 ∩ ŨTn

.

Remark 4. In the proof of Proposition 5.6 we have exhibited an example of unrefinable
partition for each class, constructed by maximizing a2 + a3 + . . . ah−3 and consequently by
determining a1. The unrefinability of the obtained partition is then granted from the fact
that a1 + a2 > α1. Notice that, each other partition λ′ of the same class is determined by
the removed parts a′

1, a′
2, . . . , a′

h−3 such that a′
1 = a1 + i and a′

s = as − is−1 for s > 1 and

is ≥ 0, where i =
∑h−4

s=1 is, provided that a′
i < a′

s for i < s. The unrefinability of λ′ is then
easily proved, since

a′
1 + a′

2 = a1 + i + a2 − ii ≥ a1 + a2 ≥ α1 ≥ α′
1.

Example 5.8. Let n = 49. For the bound in the previous corollary, when considering
partitions of class D we have 5 ≤ h ≤ (1 +

√
29 + 4n)/2 = 8. Let us fix h = 7 and construct

all the partitions in ŨT49
∩ D7. We recall that, for Theorem 4.1, a partition of class D7 is

given when a1, a2 . . . , ah−3 = a4 are specified. Therefore, for sake of simplicity, we denote the
partitions just by listing the removed parts (a1, a2, a3, a4). Let us start, as in Proposition 5.6,
from the partition

(
n + h2 − 3h − 9

2
, n − 7, n − 6, n − 5

)
= (34, 42, 43, 44) .

All the remaining partitions in D7, obtained as in Remark 4, are:

(35, 41, 43, 44) (36, 40, 43, 44)

(37, 39, 43, 44) (36, 41, 42, 44)

(37, 40, 42, 44) (38, 39, 42, 44)

(38, 40, 41, 44) (37, 41, 42, 43)

(38, 40, 42, 43) (39, 40, 41, 43)

The partitions in other classes are obtained analogously.

We have already highlighted in Example 5.2 and in Example 5.3 what min
λ∈ŨTn

mex(λ)

looks like. The intuition can now be easily proved as a consequence of the previous propo-
sitions.

Corollary 5.9. Let n ≥ 7 be odd. For each λ ∈ ŨTn
we have

mex(λ) = µ1 ≥ (n − 3)

2
.

Proof. Notice that µ1 = a1. The claim is trivial if λ = π̃n. Otherwise it follows from
Proposition 5.4, 5.5 and 5.6, recalling that a1 was calculated in order to be minimal, since
a2 + a3 + · · · + ah−3 was maximized. The results are summarized in Table 3, where is not
hard to check that (n − 3)/2 is the smaller value that a1 can assume.

�
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class a1

C4 (n − 3)/2
B4 (n − 1)/2
A4 (n + 1)/2

D5 (n + 3)/2
C5 (n + 3)/2
B5 (n + 5)/2
A5 (n + 7)/2

Dh (n + h2 − 3h − 9)/2
Ch (n + h2 − 3h − 7)/2
Bh (n + h2 − 3h − 5)/2
Ah (n + h2 − 3h − 3)/2

Table 3. Values of a1 in the construction of Proposition 5.4, 5.5 and 5.6,
for h = 4, h = 5 and h ≥ 6.

5.2. The bijection. In this conclusive section we prove the main contribution of this work,
i.e. we show that, when n is odd, the number of maximal unrefinable partitions of Tn equals
the number of partitions of ⌈n/2⌉ into distinct parts by means of a bijective proof. Notice
that, by the anti-symmetric property (Remark 3) and by the bound on the minimal excludant

(Corollary 5.9), a partition in ŨTn
is determined by at most

(n − 2) − n − 3

2
=

n + 1

2
− 1 =

⌈n

2

⌉
− 1

parts, and so is a partition of ⌈n/2⌉ into distinct parts. The following theorem is used to

establish a bijection between ŨT2k−1
and Dk.

Theorem 5.10. Let a1, a2, . . . , au be the missing parts smaller or equal than n − 3 of an
unrefinable partition λ 6= π̃n of Tn, for some odd integer n ≥ 7. Then n, λ and its class are
uniquely determined.

Proof. Let us start by proving that n can be obtained by the knowledge of a1, a2, . . . , au. In
particular, let us prove that

n =
2
∑u

i=1 ai + 1 + 4u

2u − 1
(10)

by distinguishing the four possible classes. Let us first assume λ ∈ Dh for some h ≥ 5.
Recalling that au ≤ n − 3 and, by definition of Dh and by Remark 3, since ah−1 = n − 1
and ah = n, we have au /∈ {n − 3, n − 4}. Therefore au ≤ n − 5, and so u = h − 3. Recalling
that the following conditions hold

(i) 1 ≤ a1 < a2 < · · · < ah−3 ≤ n − 5,
(ii) n − 4 ≤ ah−2 < ah−1 < ah ≤ n,
(iii) n < αh−3 = 2n − 4 − ah−3 < αh−4 = 2n − 4 − ah−4 < · · · < α1 = 2n − 4 − a1,
(iv)

∑
ai =

∑
αi,

we obtain
u∑

i=1

ai =
(u + 1)(2n − 4) − (3n − 3)

2
,

from which we determine n as claimed.
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Let us consider the class Ch. In this case, reasoning as above, we have au = n − 3 and
au−1 ≤ n − 5, which means u − 1 = h − 3. Therefore

u∑

i=1

ai − (n − 3) =
u−1∑

i=1

ai =
u(2n − 4) − (3n − 5)

2
,

from which we obtain again Eq. (10).
When λ ∈ Bh, we have au = n − 4, which means h = u + 2, so

u∑

i=1

ai − (n − 4) =

u−1∑

i=1

ai =
u(2n − 4) − (3n − 7)

2
,

from which the same n is determined.
In conclusion, if λ ∈ Ah, we have au = n − 3 and au−1 = n − 4, so h = u + 1 and Eq. (10)

is satisfied since
u∑

i=1

ai − (n − 4) − (n − 3) =

u−2∑

i=1

ai =
(u − 1)(2n − 4) − (3n − 9)

2
.

Now that n is determined from a1, a2, . . . , au, the class of the partition can be recognized
by looking at au−1 and au. In particular

• au < n − 4 ⇐⇒ λ ∈ Du+3,
• au = n − 3 and au−1 < n − 4 ⇐⇒ λ ∈ Cu+2,
• au = n − 4 ⇐⇒ λ ∈ Bu+2,
• au = n − 3 and au−1 = n − 4 ⇐⇒ λ ∈ Au+1.

To conclude, we determine the partition by using the anti-symmetric property (cf. Remark 3).
�

We are now ready to prove our last result. Denoting by D the set of all the partitions into
distinct parts, let us define the following subsets of D:

A∗
t

def

= {λ = (λ1, λ2, . . . , λt) | λ ∈ D, λ1 = 1, λ2 = 2, t ≥ 3},

B∗
t

def

= {λ = (λ1, λ2, . . . , λt) | λ ∈ D, λ1 = 2, t ≥ 2},

C∗
t

def

= {λ = (λ1, λ2, . . . , λt) | λ ∈ D, λ1 = 1, λ2 > 2, t ≥ 2},

D∗
t

def

= {λ = (λ1, λ2, . . . , λt) | λ ∈ D, λ1 > 3, t ≥ 2}.

It is not hard to notice that

D = A∗ ∪̇ B∗ ∪̇ C∗ ∪̇ D∗,

where

A∗ def

=
⋃

t≥3

A∗
t , B∗ def

=
⋃

t≥2

B∗
t , C∗ def

=
⋃

t≥2

C∗
t , D∗ def

=
⋃

t≥2

D∗
t .

Let us conclude the paper proving a bijection between ŨT2k−1
and Dk.

Theorem 5.11. Let k ∈ N, k ≥ 7, n = 2k − 1 and N = Tn. Let σ : ŨTn
→ Dk be such that

λ 7→
{

(3, k − 3) λ = π̃n

(n − 2 − au, . . . , n − 2 − a2, n − 2 − a1) λ 6= π̃n

,

where, if λ 6= π̃n, then (a1, a2, . . . , au) are the missing parts of Mλ ∩ {1, 2, . . . , n − 3} as in

Theorem 5.10. Then σ is bijective, therefore #ŨT2k−1
= #Dk.
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Proof. For sake of brevity and by virtue of Theorem 5.10, we will denote each λ ∈ ŨTn
\{π̃n}

by listing its missing parts a1, a2, . . . , au in Mλ∩{1, 2, . . . , n−3}. We prove that σ is bijective

by proving explicitly that partitions of A ∩ ŨT2k−1
are in one-to-one correspondence with

those of A∗ ∩Dk and that the same holds respectively for B and B∗, C and C∗, and D ∪ {π̃n}
and D∗.

Let us start by proving that σ is well defined, i.e. for each λ ∈ ŨTn
we have that σ(λ) is

a partition of k into distinct parts. If λ = π̃n there is nothing to prove, otherwise, since the
missing parts of λ are distinct, so are the parts n−2−au < · · · < n−2−a2 < n−2−a1 of σ(λ).
We now prove that the sum of the parts of σ(λ) is k in each possible case, making extensively
use of Proposition 5.4, Proposition 5.5 and Proposition 5.6 without further mention.
If λ ∈ A4, then λ = ((n + 1)/2, n − 4, n − 3) and so

σ(λ) =

(
1, 2, n − 2 − n + 1

2

)
=

(
1, 2,

n − 5

2

)
=

(
1, 2,

n + 1

2
− 3

)
= (1, 2, k − 3) ∈ Dk.

Notice that, in particular, σ(λ) ∈ Dk ∩ A∗
3. Similarly, if λ ∈ B4, then λ = ((n − 1)/2, n − 4)

and σ(λ) = (2, (n + 1)/2 − 2) = (2, k−2) ∈ Dk∩B∗
2 . If λ ∈ C4 we have λ = ((n − 3)/2, n − 3),

so σ(λ) = (1, (n + 1)/2 − 1) = (1, k − 1) ∈ Dk ∩ C∗
2 .

If λ ∈ A5, then λ = ((n + 7)/2 + i, n − 5 − i, n − 4, n − 3), for 0 ≤ i ≤ ⌊(n − 19)/4⌋, and

σ(λ) =

(
1, 2, 3 + i,

n − 11

2
− i

)
=

(
1, 2, 3 + i,

n + 1

2
− 6 − i

)
= (1, 2, 3 + i, k − 6 − i) ∈ Dk,

for 0 ≤ i ≤ ⌊(n − 19)/4⌋. In particular, σ(λ) ∈ Dk ∩ A∗
4. Similarly, if λ ∈ B5, then

λ = ((n + 5)/2 + i, n − 5 − i, n − 4) and

σ(λ) =

(
2, 3 + i,

n + 1

2
− 5 − i

)
= (2, 3 + i, k − 5 − i) ∈ Dk ∩ B∗

3 ,

for 0 ≤ i ≤ ⌊(n − 17)/4⌋. If λ ∈ C5, we have λ = ((n + 3)/2 + i, n − 5 − i, n − 3) and so

σ(λ) =

(
1, 3 + i,

n + 1

2
− 4 − i

)
= (1, 3 + i, k − 4 − i) ∈ Dk ∩ C∗

3 ,

for 0 ≤ i ≤ ⌊(n − 15)/4⌋. In the case when λ = ((n + 3)/2 + i, n − 6 − i) ∈ D5, we have

σ(λ) =

(
4 + i,

n + 1

2
− 4 − i

)
= (4 + i, k − 4 − i) ∈ Dk ∩ D∗

2 ,

for 0 ≤ i ≤ ⌊(n − 17)/4⌋.
Let us now consider λ ∈ Dh for h ≥ 6. In this case

λ =
(
(n + h2 − 3h − 9)/2 + i, n − h − i1, . . . , n − 5 − ih−4

)
,

where i =
∑h−4

s=1 is, and so

σ(λ) =

(
3 + ih−4, . . . , h − 2 + i1,

n − h2 + 3h + 5

2
− i

)

=

(
3 + ih−4, . . . , h − 2 + i1, k + 2 − h2 − 3h

2
− i

)
.

Notice that



ON THE MAXIMAL PART IN UNREFINABLE PARTITIONS OF TRIANGULAR NUMBERS 17

(3 + ih−4) + (4 + ih−5) + · · · + (h − 2 + i1)+

+

(
k + 2 − h2 − 3h

2
− i

)
=

h−2∑

j=3

j +

h−4∑

s=1

is + k + 2 − h2 − 3h

2
− i =

(h − 2)(h − 1)

2
− 3 + k + 2 − h2 − 3h

2
=

h2 − 3h

2
− 2 + k + 2 − h2 − 3h

2
= k,

and so σ(λ) ∈ Dk ∩ D∗
h−3. Similarly, if λ ∈ Ch, then

λ =

(
n + h2 − 3h − 7

2
+ i, n − h − i1, . . . , n − 5 − ih−4, n − 3

)

and

σ(λ) =

(
1, 3 + ih−4, . . . , h − 2 + i1, k + 1 − h2 − 3h

2
− i

)
∈ Dk ∩ C∗

h−2

since the sum of the first h − 3 terms is (h2 − 3h)/2 − 1 +
∑h−4

s=1 is. If λ ∈ Bh, we have

λ =

(
n + h2 − 3h − 5

2
+ i, n − h − i1, . . . , n − 5 − ih−4, n − 4

)

an so

σ(λ) =

(
2, 3 + ih−4, . . . , h − 2 + i1, k − h2 − 3h

2
− i

)
∈ Dk ∩ B∗

h−2,

since the sum of the first h − 3 terms is (h2 − 3h)/2 +
∑h−4

s=1 is. Finally, in the case when

λ =

(
n + h2 − 3h − 3

2
+ i, n − h − i1, . . . , n − 5 − ih−4, n − 4, n − 3

)
∈ Ah, (11)

we obtain

σ(λ) =

(
1, 2, 3 + ih−4, . . . , h − 2 + i1, k − 1 − h2 − 3h

2
− i

)
∈ Dk ∩ A∗

h−1, (12)

noticing that the sum of the first h − 2 terms is (h2 − 3h)/2 + 1 +
∑h−4

s=1 is.
We proved that σ is well defined. Notice also that σ is trivially injective. Therefore it

remains to prove that σ is surjective. In particular, it suffices to check that for each partition

λ∗ ∈ (A∗ ∪̇ B∗ ∪̇ C∗ ∪̇ D∗)∩Dk, λ∗ 6= (3, k −3), there exists λ ∈ (A ∪̇ B ∪̇ C ∪̇ D)∩ ŨT2k−1
such

that σ(λ) = λ∗, since σ(π̃n) = (3, k − 3) by definition. Given λ∗ = (λ∗
1, λ∗

2, . . . , λ∗
t ) ∈ Dk, by

definition of σ we have that the partition λ denoted by its missing parts (n − 2 − λ∗
t , . . . , n −

2 − λ∗
2, n − 2 − λ∗

1) is such that σ(λ) = λ∗. It remains to prove that such λ is a maximal
unrefinable partition of n. The full details of the proof are here omitted since they can be
obtained by arguments very similar to those used for proving that σ is well defined. As an
example, let us consider the case when λ∗ ∈ A∗

t ∩ Dk, for t ≥ 5, and let us prove that λ∗ is
the image of an unrefinable partition λ of class A. Since λ∗ is a partition of k into t distinct
parts and containing 1 and 2 by definition we can write

λ∗ =

(
1, 2, 3 + i1, . . . , t − 1 + it−3, k −

t−1∑

s=1

λ∗
s

)
, (13)
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x n − 2 n λt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
6 5 4 3 2 1

• • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •

Table 4. The bijection σ shown on the partitions of λ ∈ ŨT13
, λ 6= π̃13.

where
t−1∑

s=1

λ∗
s =

(t − 1)t

2
+

t−3∑

s=1

is

for some i1, i2, . . . , it−3 ≥ 0 (cf. also Eq. (12)). We can now substitute t − 1 to h − 2 and
(n + 1)/2 to k in Eq. (13). Applying the correspondence λi ↔ n − 2 − λ∗

t−i+1 and denoting
the obtained partition λ by listing its missing parts, we obtain

λ =

(
n + h2 − 3h − 3

2
+ i, n − h − ih−4, . . . , n − 5 − i1, n − 4, n − 3

)

as in Eq. (11). This proves that λ ∈ ŨT2k−1
∩ At+1 is unrefinable (cf. Proposition 5.6 and

Remark 4) and such that σ(λ) = λ∗. The remaining cases are similar. �

Remark 5. The bijection σ is not well defined when k < 7. However, it can be easily
shown that the result of Theorem 5.11 is still valid when k = 4 and k = 5, where we have

#ŨT7
= #D4 = 1 and #ŨT9

= #D5 = 2, respectively. The claim is false instead in the case

k = 6, where we have #ŨT11
= 4 and #D6 = 3.

In the proof of Theorem 5.11 we showed that σ is a bijection from ŨT2k−1
to Dk. More

than this, we also proved that σ is bijective when restricted to each class.

Corollary 5.12. The function σ of Theorem 5.11 sends in a bijective way

(i) Ah ∩ ŨT2k−1
to A∗

h−1 ∩ Dk,

(ii) Bh ∩ ŨT2k−1
to B∗

h−2 ∩ Dk,

(iii) Ch ∩ ŨT2k−1
to C∗

h−2 ∩ Dk,

(iv) Dh ∩ ŨT2k−1
to
(
D∗

h−3 \ {(3, k − 3)}
)

∩ Dk.

Example 5.13. Coming back to the case of Example 5.2, we represent in Tab. 4 the bijection
σ between maximal unrefinable partitions of 13 obtained in the case h = j − 2 (hence those
different from π̃13), represented by black dots, and the partitions of 7 into distinct parts,
represented by blue dots. Notice that the partition (3, 4) is not displayed since it corresponds
to π̃13. Here x corresponds to

x
def

= min
λ∈ŨT13

mex(λ).

Equivalently, by the anti-symmetric property, partitions of 7 into distinct parts can be read
looking at the black dots in the right side of the table.

Remark 6. Another combinatorial equality can be derived from the provided construction

for ŨN . Indeed, assuming n = 2k − 1 for k ≥ 7, h ≥ 6, and reasoning as in Example 5.8,
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class f(n, h) g(n, h)

Ah
−h3+6h2+(n−8)h−4n+2

2
n−h2+3h−5

2

Bh
−h3+6h2+(n−6)h−4n−6

2
n−h2+3h−3

2

Ch
−h3+6h2+(n−4)h−4n−14

2
n−h2+3h−1

2

Dh
−h3+6h2+(n−2)h−4n−22

2
n−h2+3h+1

2

Table 5. The values of f(n, h) and g(n, h) for each class.

it can be easily shown that #
(
ŨTn

∩ Dh

)
equals the number of partitions in h − 3 parts of

f(n, h) in which each part is smaller or equal than g(n, h), where

f(n, h) =
−h3 + 6h2 + (n − 2)h − 4n − 22

2
and g(n, h) =

n − h2 + 3h + 1

2
.

The proof is obtained from Proposition 5.6, considering the bijection

ai ↔ ai − a1 + 1. (14)

In Tab. 6 the result is summarized for each class. Notice that, using the bijection of Eq. (14)
on the partitions shown in Example 5.8, one can recover the eleven partitions of 31 in 4
parts, where each part is not larger than 11.
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