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Abstract

Unrefinable partitions are a subset of partitions into distinct parts which satisfy an addi-
tional unrefinability property. More precisely, being an unrefinable partition means that
none of the parts can be written as the sum of smaller integers without introducing a
repetition. We address the algorithmic aspects of unrefinable partitions, such as testing
whether a given partition is unrefinable or not and enumerating all the partitions whose
sum is a given integer. We design two algorithms to solve the two mentioned problems
and we discuss their complexity.

Keywords: integer partitions into distinct part, minimal excludant, algorithms.

1. Introduction

Given N ∈ N, a partition of N is a finite sequence of positive integers λ1, λ2, . . . , λk
such that

N = λ1 + λ2 + · · ·+ λk.

Each λi is called a part of the partition, and a partition into distinct parts is a partition
where all parts are distinct integers. In this work we only discuss partitions into distinct
parts and, among them, we are interested in the study of unrefinable partitions, where
refining a partition means splitting any of its parts as the sum of smaller pieces. When
the repetition of elements is allowed, the process of refining a partition can proceed
until one obtains

N = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
N times

and for this reason it is of little interest.
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The problem becomes more interesting if we require the considered partitions, after the
refinement, to still be partitions into distinct parts. Consider for example the following
partition of 50:

50 = 1 + 2 + 3 + 4 + 6 + 7 + 11 + 16.

Is there a way to refine any of the parts without introducing a repetition? In this case
the answer is no, but how can this be tested and what effort is required?

There are well known algorithms and formulas to enumerate or count all partitions of
a given N [And76], but none is known, to our knowledge, for unrefinable partitions.
In order to close this gap, we address in this paper some algorithmic aspects related
to unrefinable partitions. We present two algorithms: one which verifies whether a
partition is unrefinable or not, and one which recursively enumerates all unrefinable
partition of a given N . More precisely, we discuss a naı̈ve O(`3)-algorithm which
determines if an increasing sequence of integers with maximum element equal to `
represents an unrefinable partition and show that it can be improved by means of simple
arithmetical arguments. We prove that the verification problem can be actually solved in
O(`+µ2) steps, where µ is the minimal excludant of the sequence, i.e. the least integer
that is not a part, which is defined in detail in the next section. Following Aragona et
al. [ACCL22] we have that ` and µ are upper bounded by some functions in O(

√
N),

therefore the verification algorithm is linear in N in the worst case.

1.1. Related works
The notion of unrefinable partition is at least as old as the OEIS entry A179009 [OEI]
(due to David S. Newman in 2011) and has been formally introduced in a paper by
Aragona et al. [ACGS22], where unrefinability appeared in a natural way in connection
to some subgroups in a chain of normalizers [ACGS21]. The authors proved that the
generators of such subgroups are parametrized by some unrefinable partitions satisfy-
ing additional conditions on the minimal excludant. Some first combinatorial equalities
regarding unrefinable partitions for triangular and non-triangular numbers have been
shown recently [ACCL22, ACC22]. The notion of minimal excludant, which frequently
appears also in combinatorial game theory [Gur12, FP15], has been studied in the con-
text of integers partition by other authors [AN19, BM20, HSS22].

1.2. Organization of the paper
The remainder of this document is arranged as follows. In Sec. 2 we introduce our nota-
tion and show some preliminary results. In Sec 3 we present the verification algorithm
(cf. Algorithm 1), prove its correctness and discuss its complexity (cf. Theorem 13).
The enumerating algorithm (cf. Algorithms 3 and 4) and the relative complexity anal-
ysis (cf. Theorem 18) are presented in Sec 4, which concludes the paper.

2. Notation and preliminaries

In this paper we use a non-conventional representation for partitions into distinct parts.
Namely, together with the integers which belongs to the partition, we explicitly mark all
the missing parts up to a certain value. Formally, we call a sequence of parts a sequence
of integers λ = (vi)i≥1 such that
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1. there exists ` ≥ 1 such that for i > ` we have vi = 0,
2. for each 1 ≤ i ≤ ` we have that vi is either i or 0.

Each null vi is displayed using the symbol ?, and we denote for brevityλ = (v1, v2, . . . , v`),
where ` is as above, and i is called the index of vi. Defining

sum(λ) =

∞∑
i=1

vi =
∑
vi=i

vi <∞,

where the symbol ? is treated as zero, any such sequence naturally represents a partition
of the integer N = sum(λ) into distinct parts. Therefore, when it is not ambiguous,
we use the terms partition and sequence of parts interchangeably. We call length of the
sequence of parts the integer ` = |λ|. If x ≤ |λ| and vx is equal to x then we say that x
is a part of λ, and say that x ∈ λ. Otherwise we say that x 6∈ λ.

The representation of a partition as a sequence of parts is clearly not unique and this
is exactly the reason why we need to introduce this formalism. We use this represen-
tation to distinguish, e.g., that (1, 2, ?, ?, 5) is a prefix of (1, 2, ?, ?, 5, 6, 7, ?, 9) while
(1, 2, ?, ?, 5, ?) is not, even though they both represent the partition of 8 with parts 1,
2, and 5. This distinction will be useful while discussing the process of verifying and
enumerating partitions. Indeed, our algorithms will take sequences of parts as inputs
and will

1. test whether a sequence of parts is unrefinable,
2. enumerate all unrefinable sequences of parts of a given N which does not end

with ?.

Our representation highlights the numbers that are not included among the parts of the
partitioned number N . We say that x is a missing part of λ when x ≤ |λ| and the xth
coordinate of λ is ?.1 The smallest missing part in λ (i.e., the index of the leftmost ?
in the sequence) is called the minimal excludant of λ, and is denoted by mex(λ). It is
customary in the relevant literature to set mex(λ) = 0 when there is no such minimal
excludant, i.e., when λ does not have any ?.

For conveniency, we abuse notation and we define λ∪ {?} as the sequence of parts ob-
tained concatenating a ? to λ. In the same way, we denote λ ∪{x} as the concatenation
of λ with number x, the latter operation being well defined only when x = |λ|+ 1.

Let us now define the notion of refinability in the context of sequences of parts.

Definition 1 (Refining). Let us consider a sequence of parts

λ = (v1, v2, . . . , v`).

A part vr is refinable when the equation r = r1 + · · ·+ rt holds for some t > 1, with
vr = r and vr1 , . . . , vrt all equal to ?. Accordingly, the equation r = r1 + · · · + rt is

1Notice that an integer x 6∈ λ is not called a missing part when x > |λ|.
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a refinement of vr. A part that has no refinement is called unrefinable. A partition λ is
refinable if some of its part admits a refinement, and it is unrefinable otherwise.

Since we are discussing algorithmic matters, it is a legitimate concern whether the
length of a sequence of parts might be longer than the length of a simple list of parts
(missing parts excluded). However it turns out that, if representing unrefinable parti-
tions, their sizes are actually similar, as the following known lemma [ACCL22] and its
corollary show.

Lemma 2 ([ACCL22]). Let λ = (v1, v2, . . . , v`) be a sequence of parts with v` = `
representing an unrefinable partition. Then the number of missing parts in λ is at most
b`/2c.

Corollary 3. Let λ = (v1, v2, . . . , v`), with v` = `, be a sequence of parts representing
an unrefinable partition and let k be the number of parts in λ. Then

k ≤ ` ≤ 2k.

Proof. Let k and m be respectively the number of parts and missing parts in λ. A
sequence of parts of length ` can have at most ` parts, therefore k ≤ `. For the second
inequality we have thatm is at most b`/2c by the previous lemma, and furthermore that
` = m+ k. Hence d`/2e ≤ k, which implies ` ≤ 2k.

At first glance it may seem that checking refinability for a partition λ should be com-
putationally expensive, since, according to Definition 1, we potentially need to check
all sums of two or more indexes that corresponds to ? in λ. However, it is not hard to
realize that if a λ is refinable, then there exists a part r with some refinement of the form
r = a+ b.

Proposition 4. If a partition λ has some refinement, then its smallest refinable part r
has a refinement of the form r = a+ b.

Proof. Let r be the smallest refinable part for which there exists some refinement r =
ν1 + · · · + νt. If t = 2 there is nothing to prove. Otherwise, let us fix a = ν1 and
b = ν2 + · · · + νt. If b ∈ λ, then b = ν2 + · · · + νt would be a refinement itself, but
b < r and this would violate the minimality of r, hence b is not a part of λ. This shows
that r = a+ b is indeed a refinement of λ.

From Proposition 4 it is easy to obtain a polynomial algorithm that checks refinability
of a sequence of parts λ in time O(`3): for every part of λ, test whether it is the sum of
two smaller missing parts. We will show in the next section how this algorithm can be
improved.
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3. A faster algorithm to check refinability

In this section we introduce Algorithm 1 to check refinability of sequences of parts. This
algorithm is faster compared to the naı̈ve one discussed above. Our improvement comes
from the key observation that whenever a and b are missing elements in an unrefinable
partition λ, then for any two integers x, y > 0 we have that xa + yb cannot be in λ.
This leads to the following idea: once we know µ = mex(λ), if we find out that x is
another missing part, then none of x+ µ, x+ 2µ, x+ 3µ, . . . can be parts of λ, unless
λ is refinable. Hence, for each 0 ≤ j < µ we just need to keep trace of the first missing
part (greater than µ) that is equal to j (mod µ) to completely characterize all parts that
would violate unrefinability.

Example 5. Assume we want to check whether a sequence λ is refinable and that λ has
(1, 2, 3, ?, 5, 6, ?, 8, 9, ?) as prefix. We know that mex(λ) = 4, and since 7 6∈ λ, the
numbers {11, 15, 19, . . .} cannot be parts of λ unless it is refinable. Similarly, integers
as {14, 18, 22, . . .} are forbidden as well because 10 6∈ λ. The integer 17 is forbidden
too, because it is 7+ 10, and therefore also {21, 25, 29, . . .} are forbidden. Essentially,
after reading the first 10 elements of λ, we already know that 7 + 4t cannot be in λ for
all t ≥ 1, unless the sequence is refinable, i.e. that every integer larger than 7 which
belongs to the residue class of 3 modulo µ = 4 would violate unrefinability. The same
for 10 + 4t for t ≥ 1 and for 17 + 4t for t ≥ 0. The distinction between the case t ≥ 0
and t ≥ 1 will be clear in the next paragraph.

The algorithm that we are about to present scans the values of v1, v2, . . . , v` from index
µ+1 to `, while maintaining the information about which numbers in each residue class
modulo µ are forbidden, i.e., are either known missing parts or violate unrefinability if
met later when scanning the sequence.

More precisely, this is accomplished by defining µ counters pj for each residue class
0 ≤ j < µ modulo µ. We initially set pj :=∞, meaning there is no forbidden number
in the residue class j. Going from µ+1 to `, the values of each pj is updated every time
a missing part is met in the sequence of parts. The invariant is when we reach position
vt in the sequence, the values

pj pj + µ pj + 2µ pj + 3µ . . .

are all forbidden in any unrefinable sequence of parts starting with the same prefix
v1, . . . , vt. This is indeed enough: we can update pjs so that when the scan reaches
v` without meeting any forbidden value, then λ is unrefinable.

Algorithm 1 proceeds as follows. It starts by finding the minimal excludant µ, and
if none exists, then the partition is obviously unrefinable. Then it checks all integers
from index µ + 1 to v` in order. For a given number r in this sequence there are two
possibilities:

• r ∈ λ and therefore we need to check if it has a refinement;

• r 6∈ λ and then we update our knowledge of which numbers would contradict
refinability, if met.
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In the second case, such knowledge is represented by the numbers p0, . . . , pµ−1 which
are updated at each iteration of the main loop of the algorithm. If pj is finite, then it is
equal to j modulo µ.

Algorithm 1: Verify (an algorithm to check refinability)
Input : λ = (v1, v2, . . . , v`)
Returns: Refinable or Unrefinable

1 µ← mex(λ)
2 if µ = 0 then return Unrefinable
3 ~p = (p0, . . . , pµ−1)← (∞,∞, . . . ,∞)
4 for r in (µ+ 1), . . . , ` do
5 j ← r (mod µ)
6 if vr = r and vr ≥ pj then return Refinable
7 if vr = ? then ~p←Update(~p, r)
8 end
9 return Unrefinable

Algorithm 2: Update (improves pjs after a new missing part r is discovered)
Input : ~p = (p0, . . . , pµ−1), r a newly discovered missing part
Returns: ~p = (p0, . . . , pµ−1), updated

10 j ← r (mod µ)
11 if r > pj then
12 t← r + pj (mod µ)
13 pt ← min(pt, r + pj)

14 else
15 pj ← r
16 for j′ in {1, . . . , µ− 1} \ {j} do
17 t← j + j′ (mod µ)
18 pt ← min(pt, pj + pj′)

19 end
20 end
21 return (p0, . . . , pµ−1)

Algorithm 1 uses a subroutine called Update (cf. Algorithm 2). Once we discover
a new missing part r, two different circumstances can occur, and they are addressed
accordingly by Update. Precisely, either r is not the smallest missing part in its residue
class, and in this case we just need to see how r interacts with smaller missing parts in
the same residue class (if branch); or r is the smallest missing part in its residue class,
and then we need to check how this influences all other missing parts (else branch). We
give examples for both cases, precisely Example 6 for the else branch and Example 7
for the if branch.
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Example 6. Let λ = (1, 2, 3, 4, 5, ?, 7, 8, ?, ?, 11, 12, 13, ?, . . .) and consider all calls
to Update when Algorithm 1 reaches 14 in λ. We have µ = 6. The first call sets
p3 = 9. The second call sets p4 = 10, and since 19 = 9 + 10, we need 19 to be
forbidden as well. This happens in the for loop that sets p1 = 19. At this stage we
have (p0, p1, p2, p3, p4, p5) = (∞, 19,∞, 9, 10,∞). The third call happens when the
scan reaches 14. Here the algorithm sets p2 = 14, and afterward the for loop in line 15
computes the forbidden values

19 + 14 = 33, 9 + 14 = 23, 10 + 14 = 24.

The information that 33 is forbidden is included in p3 (previously set to 9), while the
information p5 = 23 and p0 = 24 is newly determined. When 14 is reached and
processed, the information on forbidden numbers is represented by

(p0, p1, p2, p3, p4, p5) = (24, 19, 14, 9, 10, 23).

The partition λmay continue either with 15 or with ?. Notice that 15 = 3 (mod 6) and
15 > p3 = 9, therefore 15 ∈ λwould prove refinability (indeed 15 = 6+9). Therefore
λ can only continue with ?.

Example 7. Let λ = (1, 2, 3, ?, 5, 6, ?, 8, 9, ?, ?, 12, 13, ?, . . .) and consider the call to
Update when Algorithm 1 reaches 14 in λ. We have µ = 4. By the time the algorithm
scans position 14 we know that the sequence misses parts 10 and 14, therefore 24 must
be forbidden as well. Indeed in this call we have r = 14 and p2 = 10, and line 13 runs
and sets p0 to 24 as desired.

In the rest of the section we discuss the correctness and complexity of Algorithm 1.
First we prove the correctness of the algorithm on unrefinable and refinable sequences
of parts separately, then we discuss its complexity.

Lemma 8. Algorithm 1 outputs Unrefinable on every unrefinable λ.

Proof. Consider an unrefinable sequences of parts λ. We start by proving that when
the algorithm assigns a value w to some pj , it means that w 6∈ λ. We prove this by
induction on the iterations of the main loop at line 4. The base of the induction trivially
holds because before the loop all pj are set to∞.

For the inductive step we discuss all the ways these assignments occur in the Update
function described in Algorithm 2. If we set pj to w at line 15, then w 6∈ λ because
Update would have been called when vw = ?. If we update pt to value w either at
line 13 or at line 18, we already know that vr = ? and, by induction, that pj and pj′ are
not in λ. Since λ is unrefinable, the new value of pt (namely w) cannot be in λ either.

We just proved that, at any moment in the algorithm, every finite valued pj is not in λ.
We improve this by showing that the same holds for pj + tµ for t ≥ 0, by induction
on t. The case t = 0 is what we have proved so far. Assuming pj + tµ 6∈ λ, then by
unrefinability the same holds for pj + (t+ 1)µ.
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To conclude, observe that the only possible way for Algorithm 1 to be incorrect is to
return at line 6. This happens when there is some vr = r which is greater than both µ
and pj , and that it is equal to j modulo µ. Hence r = pj + tµ for some t > 0. But
we just showed that these values are not in λ, therefore the algorithm cannot return at
line 6.

To prove the correctness of Algorithm 1 on refinable partition we use the following two
propositions.

Proposition 9. Consider the iteration r of the main loop of Algorithm 1, where r 6∈ λ
and r = j (mod µ). After that iteration, pj ≤ r.

Proof. Update is called, and when it reaches line 11 either the test r > pj passes, or
pj is set to r. Hence at the end of iteration r we have that pj ≤ r. Successive iterations
can only decrease the value of pj .

Proposition 10. Assume that Algorithm 1 reaches iteration r, and let j be the residue
class of r modulo µ. The assignment at line 15 of Update is executed if and only if r is
the smallest number strictly greater than µ in residue class j with r 6∈ λ.

Proof. If there is a smaller r′ 6∈ λ in the same residue class j, then by proposition 9 we
have pj ≤ r′ < r. In that case, line 15 is not reached.

In the other direction, let r be the smallest number in the residue class j for which
r 6∈ λ. If r ≤ pj at the time the main loop reaches iteration r, then line 15 is executed.
Otherwise, pj must have been assigned to the current value at lines 13 or 18 in some
iteration r′ earlier than r. In both cases the assigned value is strictly larger than r′.
Hence we have r′ < pj < r and therefore pj ∈ λ by hypothesis. Algorithm 1 returns
Refinable at iteration pj or earlier, and therefore never reaches iteration r as assumed.

Now we can prove the correctness in the refinable case.

Lemma 11. Algorithm 1 outputs Refinable on every refinable λ.

Proof. By Proposition 4 we know that the smallest refinable part r is refinable as a+ b
with a, b 6∈ λ. Let us denote ja = a (mod µ), jb = b (mod µ), and jr = r (mod µ).
Clearly jr = ja + jb (mod µ).

If the algorithm does not reach iteration r, it must be because it returned Refinable
earlier and so there is nothing to prove. Otherwise let us show that it must return Re-
finable at iteration r.

The case of ja = 0 is simple: we have that jr = jb and pjr ≤ b by Proposition 9.
Therefore we get r > b ≥ pjr and the algorithm returns at line 6. The case of jb = 0 is
symmetric.
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For the remaining case of ja 6= 0 and jb 6= 0 we split into two further subcases: when
ja = jb and when ja 6= jb.

When ja 6= 0, jb 6= 0 and ja = jb, we may assume without loss of generality that
a < b. By the time the algorithm reaches iteration b, we have that pja ≤ a because of
Proposition 9. The test at line 11 at call Update(~p, b) can be rewritten as b > pja , hence
the value pjr is assigned to a number smaller or equal than r = a + b in the residue
class of jr, in line 13. At the time the main loop reaches the iteration r, the algorithm
reaches line 6 and returns Refinable.

When ja 6= 0 and jb 6= 0 and ja 6= jb, we need to consider the smallest missing elements
a′ and b′ that are equal to ja and jb, respectively, modulo µ. We assume without loss of
generality that a′ < b′. When the algorithm reaches iteration b′ we have that pja ≤ a′

because of Proposition 9, and that assignment pjb ← b′ in line 15 is executed because of
Proposition 10. In the for loop right after line 15, we know that ja ∈ {1, . . . , µ−1}\jb,
therefore we get that pjr is set to some value smaller or equal to a′+ b′ and in particular
to a value smaller or equal than r. In the successive iteration the value never increases,
and at iteration r we know that line 6 gets executed.

Lemma 12 (Running time). Algorithm 1, executed on the sequence of parts λ =
(v1, v2, . . . , v`) with µ = mex(λ), runs in time O(`+ µ2).

Proof. The initialization of the pjs and the computation of µ = mex(λ) takes O(`)
steps. The main loop in Algorithm 1 is executed at most ` times. The inner loop in
Algorithm 2 is executed in at most µ of them. The total running time is thereforeO(`+
µ2).

Putting together Lemmas 8, 11 and 12 we obtain the main theorem of this section.

Theorem 13. Algorithm 1, executed on the sequence of parts λ = (v1, v2, . . . , v`),
returns Unrefinable if and only if the partition λ is unrefinable. Its complexity isO(`+
µ2), where µ = mex(λ).

We conclude this section with some remarks on Algorithm 1, which will be important
in the next section regarding the enumerating algorithm. First of all, notice that if its
main loop reaches an iteration r where pj ≤ r for all 0 ≤ j < µ, then the only possible
way to extend λ is adding an arbitrary number of ?. Any additional part would lead
Algorithm 1 to return Refinable. Moreover:

Definition 14. Let λ = (v1, v2, . . . , v`) be an unrefinable sequence of parts with
mex(λ) = µ and let ~p be the values computed by Algorithm 1 on λ. We say that λ
is saturated when

|{pj ≤ ` : 0 ≤ j < µ}| = µ.

Proposition 15. Consider an unrefinable partition N = λ1 + λ2 + . . . + λk with
minimum excludant µ. There are at most µ unrefinable sequence of parts whose sum is
N , which are not saturated, and which have parts {λ1, λ2, . . . , λk}.
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Proof. Assume without loss of generality that λk is the largest part. There is a unique
sequence of parts λ with parts {λ1, λ2, . . . , λk} and length λk. Any other partition is
obtained adding stars to the sequence, but after adding µ stars the resulting sequence of
parts must be saturated.

4. How to enumerate unrefinable partitions

The verification via Algorithm 1 of a sequence of parts λ = (v1, v2, . . . , v`) with
µ = mex(λ) starts by scanning the interval µ + 1, . . . , `. Up to the point when some
index r is under scrutiny, the algorithm uses no information about the elements of λ
of successive indexes. More concretely, the values ~p computed at iteration r are com-
pletely determined by the same old values computed at iteration r − 1 and by the fact
that r is either in λ or not. Therefore we can design the enumeration process as the
visit of the tree of all possible sequences of parts, so that the verification algorithm is
run on the sequence corresponding to any branch of tree (see Figure 1). A branch is
pruned as soon as the the corresponding sequence has no possible extensions that are
unrefinable and of sum at most N . When the sum of a sequence corresponding to a
surviving branch equals the goal value N , the sequence is returned as output.

It is convenient to enumerate separately all unrefinable partitions of N that have the
same minimal excludant. Given N , we set n as the largest positive integer such that

n∑
i=1

i ≤ N

and then we partition the search space of sequences of parts according to prefixes:

λ† = (1, 2, 3, 4, . . . , n− 2, n− 1, n),
λn = (1, 2, 3, 4, . . . , n− 2, n− 1, ?),
λn−1 = (1, 2, 3, 4, . . . , n− 2, ?),
...
λ4 = (1, 2, 3, ?),
λ3 = (1, 2, ?),
λ2 = (1, ?),
λ1 = (?).

(1)

If N is triangular, i.e. if N = n(n+ 1)/2, then the sequence λ† itself is the unique
unrefinable partition of N with no minimal excludant, and it must be in the output of
the enumeration. If N is not triangular, i.e. if n(n+ 1)/2 < N , there is no unrefinable
partition with prefix λ†: any additional part would make the sum exceed N .

Any other unrefinable partition of N must have minimal excludant 1 ≤ µ ≤ n, and for
a given value of µ there is a one-to-one correspondence between these partitions and
the sequences of parts λ that

• are unrefinable,
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(1, 2, ?, 4, ?, ?)

(1, 2, ?, 4, ?, ?, 7)

(1, 2, ?, 4, ?, ?, 7, 8) (1, 2, ?, 4, ?, ?, ?, ?)(1, 2, ?, 4, ?, ?, 7, ?)

(1, 2, ?, 4, ?, ?, ?)

(1, 2, ?, 4, ?, ?, ?, 8)

Refinable 8=3+5Refinable 8=3+5

...
...

...
...

Figure 1: The branching from the sequence (1, 2, ?, 4, ?, ?). For any two sequences in the tree, the running
of Algorithm 1 proceeds identically up to the point that the corresponding branches diverge.

• have sum(λ) = N ,

• have prefix λµ = (1, 2, 3, 4, . . . , µ− 1, ?),

• have v` = ` (i.e. not ending with ?).

In order to enumerate them, we describe the recursive algorithm Enumerate (cf. Al-
gorihtm 3).

Algorithm 3: Enumerate
Input : N

λ = (1, 2, 3, . . . , µ− 1, ?, vµ+1, vµ+2, . . .), unrefinable
~p = (p0, . . . , pµ−1)

Output : All unrefinable partitions of N with prefix λ, not ending with ?.

1 r ← |λ|+ 1
2 j ← r (mod µ)

// Cases when we extend with r, if possible

3 if r < pj and sum(λ) + r = N then output λ ∪ {r}
4 if r < pj and sum(λ) + r < N then Enumerate(N , λ ∪ {r}, ~p )

// Case when we extend with ?
5 ~p←Update(~p, r)
6 if λ ∪ {?} is not saturated then Enumerate(N , λ ∪ {?}, ~p )

Enumerate starts with a sequence of parts λ with mex(λ) = µ and extends it in all
possible ways in a binary tree-like fashion (cf. Figure 1). When visiting the node of
the tree corresponding to sequence λ, the algorithm decides whether to branch on λ ∪
{v}, and successively whether to branch on λ ∪ {?}. Therefore, the tree is visited in
lexicographic order. A branch is pruned either when a partition of N is reached, when
an extension goes over the goal valueN , when it introduces a refinable part, or when the
sequence of parts is saturated according to Definition 14, and therefore no non-trivial
extension would ever be unrefinable.
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Walking along the tree, we update the values ~p using the same Update function that we
used in Algorithm 1. The idea is that the computation done by the recursive process on
the sequence corresponding to some path is the same as the one done by Algorithm 1
on the same sequence. Formally we consider

P1 the set of pairs (λ, ~p ) such that λ is unrefinable and not saturated, mex(λ) = µ,
sum(λ) < N , and such that running Algorithm 1 on λ computes the values ~p;

P2 the set of pairs (λ, ~p ) such that the execution of Enumerate(N,λµ, (∞, . . . ,∞))
produces a recursive call Enumerate(N,λ, ~p ).

Lemma 16. The two sets P1 and P2 are equal.

Proof. We prove this statement by induction on the length of the sequence. For the
base case, the sequence of parts λµ, paired with all pjs set to∞, is both in P1 and P2
because sum(λµ) < N .

For the induction step, consider the pair (λ, ~p ) for which we know that λ is unrefin-
able, is not saturated, that mex(λ) = µ and sum(λ) < N , and that a recursive call
Enumerate(N,λ, ~p ) occurs.

For the extension λ∪ {r} the values of ~p do not change in both algorithms, therefore if
λ is not saturated, neither is λ∪{r}. The pair (λ∪{r}, ~p ) is in P1 if and only if r < pj
for r = j (mod µ) and sum(λ)+ r < N . But these are exactly the same condition for
the recursive call Enumerate(N,λ ∪ {r}, ~p ).

Considering the extension λ ∪ {?}, this is of course as unrefinable as λ and the sum
does not change either. Let ~q ←Update( ~p, r). The pair (λ ∪ {?}, ~q ) is in P1 if and
only if λ∪ {?} it is not saturated , and that is the exact same condition for the recursive
call Enumerate(N,λ ∪ {?}, ~q ) to happen.

We are ready to show that, provided the appropriate input, Enumerate correctly pro-
duces all the unrefinable partitions of N with a given minimal excludant µ.

Lemma 17. The recursive algorithm Enumerate(N,λµ, ~p ), where ~p = (p0, . . . , pµ−1)
are all set to∞, outputs the unrefinable sequences of parts whose sum is N with mini-
mum excludant µ, and without ? in the last position.

Proof. By definition, the output of the enumeration only includes sequences of parts of
N , not ending with ?. We need to prove that the output includes all unrefinable ones
and no refinable ones.

Any unrefinable sequence of parts of N with minimal excludant µ, not ending with
?, can be written as λ ∪ {r} where mex(λ) = µ and sum(λ) = N − r < N . By
Lemma 16, there is a recursive call Enumerate(N,λ, ~p ) where ~p are the values com-
puted by Algorithm 1 on λ. By the correctness of Algorithm 1 it must be r < pj for
j = r (mod µ) since λ ∪ {r} is unrefinable. Hence the call Enumerate(N,λ, ~p )
outputs λ ∪ {r}.

12



Now we want to show that no refinable sequence of parts ofN is in the output. Consider
the shortest prefix λ∪{r} of any such sequence where λ is unrefinable and λ∪{r} is re-
finable. It still holds that mex(λ) = µ and that sum(λ) < N , therefore, by Lemma 16,
there is a recursive call Enumerate(N,λ, ~p )where ~p are the values computed by Algo-
rithm 1 on λ. By the correctness of Algorithm 1, it must be r ≥ pj for j = r (mod µ)
since λ∪ {r} is refinable. Hence Enumerate skips λ∪ {r} and all its extensions.

We are ready to describe the algorithm that enumerates all unrefinable partitions of N .

Algorithm 4: UnrefinablePartitions (enumerate all unrefinable partitions ofN )
Input : N
Output : All unrefinable partitions of N .

1 n← largest n such that
∑n
i=1 ≤ N

2 if
∑n
i=1 = N then output (1, 2, 3, . . . , n)

3 for µ in {n, n− 1, . . . , 2, 1} do
4 ~p = (p0, . . . , pµ−1)← (∞,∞, . . . ,∞)
5 λµ ← (1, 2, 3, . . . , µ− 1, ?)
6 Enumerate(N ,λµ, ~p )
7 end

Theorem 18. Algorithm 4 outputs all unrefinable partitions ofN in timeO(N) · U(N),
where U(N) is the number of unrefinable partitions of integers < N .

Proof. The algorithm correctly outputs λ† if and only if N is a triangular number. All
other unrefinable partitions have, as discussed above, a minimal excludant 1 ≤ µ ≤ n,
where n is defined as in the algorithm. Any such partition is uniquely represented by an
unrefinable sequence of parts not ending with a ? and having as prefix the appropriate
λµ. By Lemma 17 these sequences are produced by the calls to Enumerate in the main
cycle. Hence the algorithm correctly enumerates the unrefinable partitions of N .

To discuss the runtime, observe that each of the calls to Enumerate in the main cycle
makes a number of recursive call equal to the setP1 discussed in Lemma 16. Collecting
together all the call of all values of µ, this is by definition the number of unrefinable
and unsaturated sequences of parts of a number < N . For any unrefinable partitions
of a number ≤ N , by Proposition 15 there are at most O(

√
N) such sequences of

parts. Hence the process produces at most O(
√
N) recursive calls for each unrefinable

partitions of a number< N . The cost of each recursive call is dominated by the cost of
the call to Update, henceO(

√
N), plus the possible cost to output an actual unrefinable

partition of N , when encountered, which is again at most O(
√
N).

Therefore the total cost of the O(N) times the number2 of all unrefinable partitions of

2At the time of writing, U(N) is unknown.
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integers less than N .

An implementation in C++ of the presented algorithms, made available online at https:
//github.com/MassimoLauria/a179009, has been used to compute the number of
unrefinable partitions of N , with N up to 1500. The full list can be found online.
Some of the data are also available here in Table 1 (cf. also [OEI, https://oeis.
org/A179009]).

N unref. partitions of N N unref. partitions of N
10 1 400 57725
20 7 500 275151
30 5 1000 84527031
40 9 1100 220124218
50 15 1200 559471992

100 104 1300 1383113838
200 1616 1400 3357904448
300 11801 1500 7734760269

Table 1: The number of unrefinable partition for some integers up to 1500. A full list up to 1500 is available
at https://massimolauria.net/perm/unrefinable_01500.txt.
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