
La Sapienza - Università di Roma

Dottorato di Ricerca in Informatica

XXI Ciclo – 2008

Degree Lower bounds for Algebraic Proof Systems

Massimo Lauria

La Sapienza - Università di Roma

Dottorato di Ricerca in Informatica

XXI Ciclo - 2008

Massimo Lauria

Degree Lower bounds for Algebraic Proof Systems

Thesis Committee

Prof. Nicola Galesi (Advisor)
Prof. Angelo Monti
Prof. Alessandro Mei

Reviewers

Prof. Juan Luis Esteban
Prof. Stefan Dantchev

Author’s address:

Massimo Lauria
Dipartimento di Informatica
Sapienza, Università di Roma
Via Salaria 113, 00198 Roma, Italy
e-mail: lauria@di.uniroma1.it
www: http://www.dsi.uniroma1.it/~lauria

Acknowledgements

This thesis is not merely the product of its writer’s effort, but also the result of the joint effort
of the people around him. I wouldn’t be able to achieve this result without the support of the
closest members of my family. My parents Barbara and Giuseppe, my sister Mariangela and my
uncle/friend Andrea. Since the days of my childhood they have “enjoyed” all the annoyances of
having around someone interested in computers, computer science and math. But yet they gave
me their whole support for the pursuit of my interests. I hope this thesis will convince them that
now I have different people to annoy.

The first person in academia I need to thank is Angelo Monti. He introduced me to the
fascinating field of Computational Complexity and to the world of professional research.

I need to mention my colleague and friend Anna de Mier who gave me advice and support in
several moments of my graduate studies. It is a safe bet that I’m going to rely on her wisdom again
in the future.

During my PhD program I had the pleasure to visit the Computer Science Department at
the University of Toronto, where I had the honour to meet and to be lectured by many excellent
scientists. Far too many to name all of them here. Among them I thank Toniann Pitassi for hosting
me and for the stimulating discussions we had. I also want to thank the great students of their
theory lab.

Last but not least I thank my advisor Nicola Galesi for support, help and for introducing me
to many interesting and challenging problems. I hope to have met his expectancy.

i

Abstract

Given a propositional formula φ we are interested in studying how difficult is to prove that φ is a
tautology. Multivariate polynomials can be manipulated in a specific way to obtain such a proof.
We study the power of this algebraic manipulation. In particular its running time is deeply related
with the degree of the polynomials involved. We prove that this method behave very badly in some
cases, by showing that there are tautologies with very short proofs but which require high degree
polynomials.

This does not exclude that another method of polynomial manipulation could lead to an efficient
algorithm. In this case we are able to prove that if such efficient algorithm exists, it could be used
to solve problems believed to be very hard.

Algebraic proof systems discussed so far are limited. We define a slightly stronger system Pcrk.
We give examples of tautologies that are easy for this system, but very hard for systems known in
literature. Nevertheless we show that a random tautology is still very hard to prove for Pcrk.

iii

Contents

Acknowledgements i

Abstract iii

1 Introduction 1
1.1 Propositional Proof systems . 2

1.1.1 Resolution . 3
1.1.2 Polynomially Calculus . 4
1.1.3 Resk, a resolution on k-DNF . 6

1.2 Algebraic Representation of boolean functions . 6
1.2.1 Symbolic variables for negation . 7

1.3 Partial assignments and restrictions . 8
1.4 Thesis’s content . 9

2 Proof search techniques in Polynomial Calculus 11
2.1 Order of monomials in residue . 11
2.2 Division algorithm . 12
2.3 Gröbner basis . 13

2.3.1 Computation of a Gröbner base . 14
2.4 Bounded degree Gröbner base computation . 15
2.5 Degree complexity of a proof . 17

2.5.1 Scheme of degree lower bounds . 18

3 Graph Ordering Principle 19
3.1 The principle . 19
3.2 Polynomial Size refutation . 20
3.3 Degree lower bound for Graph ordering principle . 21

4 Non Automatizability of Polynomial Calculus 27
4.1 Proof Strategy . 27
4.2 The tautology F (C,w, r) . 28

4.2.1 Polynomial encoding of F (C,w, r) . 30
4.3 Degree Lower bounds for F (C,w, r) . 32
4.4 Non automatizability of HN, Pc and Pcr . 35

5 Pcrk proof system 39
5.1 Pcrk definition . 40

5.1.1 Complexity measures for Pcrk . 40
5.2 Relations between Pcrk and other proof systems . 41

v

vi CONTENTS

5.3 Switching lemma for k-DNF and k-monomials . 42
5.3.1 Decision trees for boolean functions . 42
5.3.2 Random restriction . 43
5.3.3 An application: lower bound in Pcrk for weak pigeonhole principle 44
5.3.4 A framework . 45

5.4 A separation between Pcrk and Pcrk+1 . 45
5.5 A separation between Pcrk and Resk . 47

6 Random CNF are hard for Pcrk 51
6.1 Random 3-CNF, encodings and Pc lower bounds . 51
6.2 How to restrict Ax = b preserving expansion . 52
6.3 Normal forms . 53
6.4 Random restriction . 55
6.5 Main result . 55

7 Open problems 57

A Notions from Commutative Algebra 63
A.1 Rings . 63
A.2 Ideals, Ring Homomorphisms, Quotient rings . 64
A.3 Quotient ring representations of boolean function . 66

B Notions from Computational Complexity 67
B.1 Complexity classes . 67

B.1.1 Reduction and NP-completeness . 68
B.2 Combinatorial circuits . 68

B.2.1 Complexity measures on circuit . 69
B.2.2 Algebraic circuits . 69
B.2.3 Boolean circuits . 69

B.3 Parameterized Computational Complexity . 70
B.4 Expanders . 71

Chapter 1

Introduction

Theorem proving is the most important activity of mathematicians. At the beginning of the
20th century it was though that every mathematical statement was deemed for a proof or for a
counterexample. In the Second International Congress of Mathematics in Paris in 1900, David
Hilbert gave is famous speech in which he listed what he though were the most important open
problems in mathematics at that time. He claimed:

... that every definite mathematical problem must necessary be susceptible of an exact
settlement, either in the form of an actual answer to the question asked, or by the proof
of the impossibility of its solution...

It is out of doubts that the 2nd and 10th problems are perfect examples of this kind of optimism.

2nd problem Prove that the axioms of arithmetic are consistent.

10th problem Find an algorithm to determine whether a given polynomial Diophantine equation
with integer coefficients has an integer solution.

Gödel’s Incompleteness results crashed such optimism in 1930. Any finite method of proving
theorems which is powerful enough is either incoherent or unable to prove all the true statements
in the theory. It was clear that the computational nature of theorem proving was the cause of such
incompleteness. The first accomplishment of recursion and computation theory was to prove im-
possibility of solving some natural computational problems. Non provability and non computability
were shown to be different perspectives of a unifying theme.

With the raise of electronic computation it is clear that computational impossibility is not just a
theoretical investigation but also an actual obstacle to solve problems. From the applicative point
of view there is no difference between a never ending computation and a computation too long
to be ever completed. Efficiency is a major topic in computability, and the study computational
complexity was started with this problem in mind (see [30] and [35] for seminal works in the area).

What about the relation between computations and proofs in this quantitative approach? What
about the efficiency of theorem proving? Formal logic systems have been used to formalize math-
ematical reasoning and have been deployed in several applicative contexts like AI, optimization,
planning and so on... then it is immediately obvious that the size of a proof and the time needed
in finding it is a major concern.

Such problems were effectively framed in [26] and [27]. In the latter paper the field of propo-
sitional proof complexity was started, as the study of the efficiency of proving. One of the main
problem arising in proof complexity is that of proving size lower bounds on the length of a proof
for a particular tautology.

1

2 CHAPTER 1. INTRODUCTION

In this thesis we concentrate on a particular way of proving theorems. Hilbert himself proved
that in some precise conditions a set of polynomials either has a common root (i.e. a solution)
or there is a polynomial equation which witnesses the absence of common roots. Such result has
been used as a tool to prove propositional theorems (actually to refute unsatisfiable propositions,
which is equivalent). Several systems have been defined in this way, systems which have great
importance for two reasons: they generalize the well-studied and widely applied Resolution proof
system; well-known algorithms for polynomial systems solving, like the Gröbner Basis Algorithm,
can be used for proving theorems.

We now give preliminary notions and definitions. We point to Appendix A for reference on
basic algebra, and to Appendix B for reference on basic computational complexity.

1.1 Propositional Proof systems

Proof complexity is the study of how difficult it is to prove a mathematical statement. Such
endeavour requires precise context and limits. The concept of “proof” is not primitive, it is a
byproduct of the concepts of “verification process” and “acceptance”. A proof is whatever makes
an appropriate verification process to accept.

In this thesis we are interested in propositional statements and in deciding whether or not they
are tautologies. The first general definition of a proof system has been given in [27].

Definition 1.1. TAUT is the set of all propositional formulas which are true for any boolean
assignment.

A proof system for propositional logic (a propositional proof system) is a polynomial time
Turing machine M such that the image of the function computed by M is TAUT.

Let φ be a propositional formula, we say φ has a proof in the system M if there exists x such
that M(x) = φ. We say that x is a proof of φ.

The intended meaning of this process is that M does only output a tautology. Then by definition
any input that makes M output φ is an actual proof of φ. Furthermore the function computed by
M is surjective in TAUT, i.e. any tautology has at least one proof. This proof system is correct
and complete.

It is very easy to show a proof system if we do not care about efficiency issues. A simple proof
system could get a statement and a truth table in input: the system evaluates the statement for
every possible input and verify (a) that the truth table values match (b) the evaluation is always
true. If both conditions are satisfied then the system outputs the statement itself; in any other case
the system outputs a canonical tautology. Such system is correct and complete, but it suffers of
the exponential length of the proof with respect to the length of the statement. We are interested
in proof systems for which any statement φ has a short proof compared to the length of φ.

Definition 1.2. A proof system is polynomially bounded if for any propositional tautology φ, there
is a proof x of φ such that |x| = |φ|O(1).

It is easy to see that a counterexample for a formula can be verified efficiently, so TAUT
is in coNP. Furthermore a formula is a tautology if and only if its negation is unsatisfiable.
Satisfiability is NP-complete, its complement is coNP-complete, and so it is TAUT. For more
information about these fundamental concepts we suggest to check Appendix B. The existence of
a bounded propositional proof system would imply that there is a short way to check either if a
formula has a satisfying assignment or if there is no one. This would mean coNP=NP. The study
of propositional proof complexity arose as a strategy to show that coNP6=NP, by proving that for
any proof system there is a tautology which requires exponential size proof.

1.1. PROPOSITIONAL PROOF SYSTEMS 3

The actual proof complexity routine is to show exponential lower bounds for stronger and
stronger proof systems, for more and more general classes of tautologies, hoping that at some point
we will find techniques for proving a lower bound for the general case. This hope is considered
by most researchers in the field to be way too optimistic. It is convenient to define the notion of
relative “strength” among proof systems.

Definition 1.3. A proof system A f(n)-simulates a proof system B if there is an algorithm T
with the following properties

• T runs in time f(|x|) on any input x.

• for any propositional tautology φ and proof x such that B(x) = φ, we have A(T (x)) = φ.

We say a proof system A polynomially simulates or p-simulates a proof system B if it nO(1)-
simulates B.

It would be a major step to define a proof system M which polynomially simulates any other
proof system. Such M would be polynomially bounded if and only if coNP=NP. In [41] the
possibility of such “strongest” proof system is studied in relation with open problems regarding
exponential time computation.

Tools in proof complexity have also been used to analyze proof search techniques used in prac-
tice. In the context of propositional logic, a proof search technique is in fact a CNF solver. Such
solvers are widely used in planning, AI techniques, etc. . . [49], notice that a computation trace of
one such system can be verified efficiently for consistence. This means that any of such systems
induces a proof system. Despite the generality of proof system definition the vast majority of widely
used systems are limited versions of Resolution (Res) system. We are going to present Res later,
together with several others proof system.

If the major problem in proof complexity is the existence of short proofs, another very relevant
question is to understand if there is an efficient way to find a proof of length similar to the shortest
one. Such procedure is called automatization and depends on the proof system. It could also be
possible that for a simpler proof system it is easy to find proofs close to the best, even if such proof
is big. The following definition was given for the first time in [21].

Definition 1.4. We say a proof system is f-automatizable if there is an algorithm A such that
for any proposition φ with shortest proof Π, A(φ) returns a proof Π′ for φ with the guarantee that
|Π′| ≤ f(|Π|). We says a proof system is automatizable if is nO(1)-automatizable and quasi-

automatizable if it is 2logO(1) n-automatizable.

1.1.1 Resolution

Resolution (Res) is the most famous and studied proof system in literature. Almost every theorem
proving procedure and SAT-solver is a weak variant of Res. Resolution is most often used as a
refutational system. The main purpose is to show that a formula implies a contradiction. Then
such formula is unsatisfiable.

Resolution system focus on CNFs. This is not a significant restriction because any boolean
formula can be transformed in a CNF which is satisfiable if and only if the original one is.

Given a boolean CNF φ on boolean variables x1, . . . , xn, any line in a resolution proof is a clause
over these variables. At any step of the proof one of the following rules is applied (A and B are
clauses, x is a literal).

A ∨ x B ∨ ¬x
A ∨B

resolution

A

A ∨ x
weakening

4 CHAPTER 1. INTRODUCTION

Thus a resolution refutation is a sequence of clauses, each of them being either (a) one of the
clauses of φ, (b) obtained by a resolution rule from two previous lines or (c) obtained by weakening
rule from a previous line.

We say the sequence of deduction is a refutation of φ if it contains the empty clause. The
system is sound in the sense that the empty clause can only be deduced if φ is unsatisfiable: any
assignment that satisfies all premises of a weakening or resolution rule also satisfies the consequent.
It follows that an assignment that satisfies φ, also satisfies all clauses in a resolution proof. The
empty clause is unsatisfiable, then either φ is unsatisfiable or the empty clause is not deducible.

There is a variant pf Resolution called Treelike Resolution. A resolution proof is a valid
treelike resolution when all clauses but the initial ones are premises of at most one deduction each.
Then the proof has a tree-like structure.

The fact that all unsatisfiable CNFs have a refutation is trivial, it follows from brute force
procedures for satisfiability, which in turn can be easily transformed in treelike resolution proof.

Notice that such procedure is very inefficient, and requires exponential time though it can be
easily implemented in linear space. It is then very interesting to study what are the necessary and
sufficient resources needed to refute a CNF. Despite the simplicity of resolution, there haven’t been
result in this sense until Tseitin’s paper in 1968 [53], and later Haken’s 1985 [34].

The breakthrough result of Haken was to prove that a natural propositional formulation of the
pigeon hole principle requires a superpolynomial number of steps. This lower bound has been im-
proved to truly exponential. Following such results, a whole series of improvements, simplifications
and variations have been developed in the area. Most notables are [24, 13, 17], and for a general
treatment see [48].

Complexity measures for Res: let Π be a Resolution proof,

S(Π) The size of Π, it is the number of symbols required to write the proof Π.

|Π| The length of Π is the number of clauses appearing in Π.

w(Π) The width of the proof, which is the biggest number of literals contained in a clauses of Π.

The size and length of a resolution proof are polynomially related. For a formula φ we custom-
arily define S(φ) and w(φ) as the smallest size and the smallest width achievable (not necessarily
simultaneously) in a refutation of φ.

It is well known that several restricted versions of resolution (like tree-like resolution) are strictly
weaker that resolution, in the sense that there are formulas for which short (i.e. polynomial size)
resolution refutations exist, but there is no short refutation in the restricted system [16, 6]. This is
unfortunate, because almost every prover used in applications is even less powerful than tree-like
resolution. Not to mention that there could be systems in which there are a very short proofs but
no way to find them. It has been shown that finding the shortest resolution proof is NP-hard [38].
Even a proof only polynomially bigger is out of reach, unless some serious complexity assumptions
fail [8].

1.1.2 Polynomially Calculus

We introduce three deductive proof systems in which lines are algebraic formulas. We interpret an
algebraic formula p(~x) to be satisfied by a 0-1 assignment ~b if p(~b) = 0. If an algebraic formula p
evaluates to 0 for any 0-1 assignment then we says p is a tautology, and we denote it as ∅ |= p or
|= p.

If any 0-1 assignment which is a common root of q1, . . . qm is also a root of p then we say
q1, . . . qm |= p. We do not care about non 0-1 assignments. For any formula p such that p(~b) = 0 we

1.1. PROPOSITIONAL PROOF SYSTEMS 5

denote ~b |= p. This notation is standard in logic, and we just extend it to algebraic representations
of boolean functions.

The Polynomial Calculus (Pc) is a refutational system, defined in [25], and based on the ring
F[x1, . . . , xn] of polynomials. To restrict the polynomials to be evaluated only on {0, 1}, the system
contains the axioms x2

i − xi for all i ∈ [n]. Moreover it has two rules. For any α, β ∈ F, p, q
polynomials and variable x:

p q

αp+ βq
Scalar addition

p

xp
Multiplication

A Pc proof of a polynomial g from a set of initial polynomials F = {f1, . . . , fm} (denoted by
F ` g) is a sequence of polynomials where each one is either an initial one, an axiom or is deduced
applying a rule to earlier polynomials.

A Pc refutation is a proof of the polynomial 1. The rational of this proof system is that any
0-1 assignment which is a common root for the initial polynomials is also a root for any deduced
polynomial. Thus the deduction of 1 is a proof that no such common root exists. A proof of

F |= p ⇐⇒ F ` p

is given in Theorem 5.2 of [23]. In the algebraic language it means that F ` p if and only if p is in
the ideal generated by F and by the axioms x2

i − xi for all i ∈ [n].

Complexity measures for Pc: let Π be a Pc proof,

S(Π) The size of Π is the number of monomials appearing in Π.

|Π| The length of Π is the number of polynomials appearing in Π.

deg(Π) The degree of Π is the maximal degree of a polynomial in Π.

Polynomial Calculus with Resolution (Pcr) [4] is a refutational system which extends Pc to
polynomials in the ring F[x1, . . . , xn, x̄1, . . . , x̄n], where x̄1, . . . , x̄n are new formal variables. Pcr
includes the axioms and rules of Pc plus a new set of axioms defined by 1− xi − x̄i for all i ∈ [n]
to force x̄ variables to have the opposite values of x variables.

We extend to Pcr the definitions of proof, refutation, degree, size and length given for Pc.
Observe that using the linear transformation x̄ 7→ 1− x, any Pcr refutation can be converted into
a Pc refutation without increasing the degree. Notice that such transformation could increase the
size exponentially. Moreover Pcr efficiently simulates Res with refutations of degree equals to the
width of the original Res proof [11].

Nullstellensatz (HN) Nullstellensatz is a static refutational proof system bases on the Hilbert’s
Nullstellensatz theorem. It states that for any given set of multivariate polynomials p1 . . . pl ∈
F[x1, . . . , xn] where F is a closed field exactly one of the following may happen:

• There is a common root for such polynomials.

• There are polynomials h1 . . . hl such that
∑l

i=1 hipi = 1

The two things cannot happen simultaneously, nevertheless Hilbert’s Nullstellensatz shows that
almost one of them occurs. By adding axioms x2

i − xi we enforce the common root to be a 0-1
solution.

6 CHAPTER 1. INTRODUCTION

In our framework we are often interested in F to be a non closed field, but this is not an issue
in this case: because of 0-1 solutions, the polynomials have a common root in the algebraic closure
of F if and only if they have one in F. Then assuming there is no such solution then

l∑
i=1

hipi +
n∑
i=1

gi(x2
i − xi) = 1

for some his and gis. It is possible to show that in this case the coefficients of his and gis are in F.

Complexity measures for HN: let Π = {h1, . . . , hl} be a HN proof,

S(Π) The size of Π is the number of monomials appearing in the polynomials Π.

deg(Π) The degree of an HN proof is maxi{deg(hipi)}.

1.1.3 Resk, a resolution on k-DNF

The Resolution system was extended by Kraj́ıček in [40] to a system, called k-DNF Resolution
(Resk), where the formula used in each line is k-DNFs instead of a clause.

Resolution on k-DNF (Resk) [40] is a sound and complete refutational system which extends
Resolution (Res) to k-DNFs. The rules are the following:

A

A ∨ l
Weakening

A ∨ l1 · · · A ∨ lj
A ∨

∧j
i=1 li

∧-intro, 1 < j ≤ k

A ∨
∧j
i=1 li

A ∨ li
∧-elim, 1 < j ≤ k

A ∨
∧j
i=1 li B ∨

∨j
i=1 ¬li

A ∨B
Cut, 1 < j ≤ k

Complexity measures for Resk: let Π be a Resolution proof,

S(Π) The size of Π, it is the number of symbols required to write the proof Π.

|Π| The length of Π is the number of k-DNFs appearing in Π.

1.2 Algebraic Representation of boolean functions

In this thesis we often represent boolean functions using algebraic formulas and circuits. On such
representation we define complexity measures. We need to make clear how the language of boolean
functions relates with the language of algebraic formulas.

Definition 1.5. We denote the boolean domain as {0, 1}n for a fixed n. We call boolean
function any function from a boolean domain to an arbitrary image set.

Given a field F, we consider polynomials in F[x1, . . . , xn] as algebraic representations for func-
tions with domain {0, 1}n and range F.

1.2. ALGEBRAIC REPRESENTATION OF BOOLEAN FUNCTIONS 7

Definition 1.6. We say that p ∈ F[x1, . . . , xn] computes a boolean function F if for all ~v ∈ {0, 1}n
we have F (~v) = p(~v).

Several polynomials represent the same boolean function. Thus we need a “canonical” repre-
sentation.

Definition 1.7. A multilinear polynomial is a polynomial in which no variable is raised to a
power greater than one.

Fact 1.8. Any boolean function of n variables with values in a field F can be computed by a unique
multilinear polynomial in F[x1, . . . , xn].

Proof. The proof of existence goes by induction on the number of variables. For constant functions
it is trivial. Assume that the statement holds for n− 1: any function F on n variables induces two
functions on n − 1 variables F0 := F �xn=0 and F1 := F �xn=1. By inductive hypothesis they are
computable by two multilinear polynomials p0 and p1 without variable xn. Then xnp1 − xnp0 + p0

is a multilinear polynomial which computes F .
We now want to prove uniqueness. We start by proving that the zero function has exactly one

multilinear representations: the empty polynomial. Given a polynomial we call “non-trivial” any
monomial occurring with non zero coefficients.

We consider now a multilinear polynomial with some non-trivial monomials. We pick among
them an arbitrary minimal monomial t with respect to inclusion (i.e. division) partial order.
Consider the following assignment: the variables appearing in t are set to 1, the other ones are set
to 0. Under such assignment all non-trivial monomials but t evaluate to 0, while t evaluates to
some non-zero value. Thus the zero function can’t be computed by a non empty polynomial.

For a general function let us assume that two different polynomials compute it. Their difference
is not empty but computes the zero function, and this is a contradiction.

For a boolean function f to a field F we say deg(f) is the degree of its multilinear representation.

1.2.1 Symbolic variables for negation

In propositional logic it is customary to use the negation operator in propositional expression. In
the algebraic setting the negation of an expression e which evaluates in {0, 1} is representable as
1 − e. As we will see later, this is an unfortunate choice if we want to represent CNF clauses
efficiently with polynomials.

We manage this by using polynomials with 2n variable, usually denoted in the following as
x1 . . . xn, x̄

1 . . . x̄n. We may think about this polynomials as algebraic circuits with 2n input gates:
n of them encode the regular input value, the other n encode its negation.

We then consider only {0, 1} assignments such that for any i the equation x̄i = 1−xi holds. In
such framework there are {0, 1}n possible assignments, and any such assignment is specified by the
values of x1 . . . xn. Thus we can use algebraic expression over 2n variables (with negated variables)
as representation of boolean functions.

Definition 1.9. We say that p ∈ F[x1, . . . , xn, x̄1, . . . , x̄n] computes a boolean function F if for
all (v1 . . . vn) ∈ {0, 1}n the equation F (v1, . . . , vn) = p(v1, . . . , vn, 1− v1, . . . , 1− vn,) holds.

This definition is merely an extension of the one of polynomials in n variables, but notice
that uniqueness of representations of boolean functions doesn’t hold for multilinear polynomials in
F[x1, . . . , xn, x̄1, . . . , x̄n]. Indeed the simple boolean function ¬x1 can be represented by both 1−x1

ad x̄1. This is the reason we introduced negated variables: among multiple representations there
could be a small one.

8 CHAPTER 1. INTRODUCTION

1.3 Partial assignments and restrictions

Partial assignments to boolean functions and expressions are common in this thesis. We want to
describe assignments in a way which is sensible for functions, polynomials and arbitrary algebraic
circuits. Notice that a partial assignment acts in different ways to different description of a boolean
function. We will prove that such different behaviors are compatible with the underlying semantic.

Definition 1.10. We call ρ an assignment (or equivalently a restriction) any set of couples
(x, b) where x is a variable and b is a value in {0, 1} such that (x, b) ∈ ρ implies (x, 1− b) 6∈ ρ.

We say x is assigned to b by ρ if (x, b) is contained in ρ, and we name Dom(ρ) the set of
variables assigned by ρ. For any x in Dom(ρ) we denote ρ(x) to be the value x is assigned to by ρ.
We denote as ρ−1(b) the set of variables assigned to b.

Given two assignments ρ, ρ′ we say they are compatible if for any variable x in Dom(ρ) ∩
Dom(ρ′) we get ρ(x) = ρ′(x).

For a family of pairwise compatible assignments we call the intersection of them the intersec-
tion assignment; and we call the union of them the union assignment.

The natural interpretation of a partial assignment ρ to act on a function F is to obtain a
function F ′ where some of the parameters are fixed.

Definition 1.11. Let be F a function and ρ an assignment. Consider a boolean function F ′ defined
as follows: for any ~b ∈ {0, 1}n the value of F ′ is equal to F (b′1, b

′
2, . . . , b

′
n) where

b′i =

{
bi when xi 6∈ Dom(ρ)
ρ(xi) when xi ∈ Dom(ρ)

we call F ′ the restriction of F by ρ, and we denote it as F �ρ.

A partial assignment transforms a function by fixing some parameters. In a similar fashion we
can think of a circuit in which some inputs are “hardwired”. Assume an arbitrary combinatorial
circuit C (see Section B.2) defined over a set of variables, and a partial assignment ρ, we consider
the following process on C:

1. For any input gate labelled by a function f , the label is changed to be f �ρ.

2. If there is any internal gates for which some of the predecessors have been changed in the
process, then the label of such gate is restricted accordingly. More precisely its label function
is a new function for which the parameters corresponding to the constant predecessors are
restricted to the corresponding values, and the edges are removed.

3. The process is closed with respect to the second step.

4. All gates that were not output gate before the process but have out degree 0 after the process
are removed.

5. The process is closed with respect to the third step.

We defined restriction on both functions and circuits. As long as circuits describe functions it is
worth to remark that for any circuit C which computes the function f and any partial assignment
ρ, the circuit C �ρ computes f �ρ.

1.4. THESIS’S CONTENT 9

1.4 Thesis’s content

Chapter 2: Proof search techniques in Polynomial Calculus. We discuss proof search
techniques in the context of algebraic proof systems. We introduce concepts from algebra and we
show how they are related with proof search. We discuss the efficiency of such search methods
and show it is deeply related with the required degree of a proof. We state a relation between size
and degree required by a refutation in Polynomial Calculus. All results shown in this chapter are
known in literature.

Chapter 3: Graph Ordering Principle. We show that there is a proposition with a short
refutation and which requires high degree. This show that any proof search technique based only
on degree is inefficient. This include Gröbner bases techniques presented in Chapter 2. Results in
this chapter answer a question open by Bonet and Galesi in [19, 20] regarding the optimality of the
relation between degree and size of proof in Pc. This chapter comes from the paper

[31] N. Galesi, M. Lauria. Degree Lower bounds for a Graph Ordering Principle, 2008
(Submitted manuscript)

Chapter 4: Non Automatizability of Polynomial Calculus. We prove that no automati-
zation exists for algebraic proof systems HN, Pc and Pcr. We rely on work done by Alehknovich
and Razborov [8] for Resolution proof system. Their result follows from a construction in two
steps: (1) automatization of Resolution proof system implies approximation of an hard optimiza-
tion problem; (2) a gap amplification technique gives an exact algorithm from the approximation.
First step only depends on the actual proof system so we adapt that step for our proof systems
and we obtain the result. This chapter comes from paper

[32] N. Galesi, M. Lauria. On Automatizability of Algebraic Proof Systems, 2008
(Manuscript)

Chapter 5: Pcrk proof system. We study a proof system Pcrk which is the mixture of
Pcand Resk. We show that for each constant value k Pcrk is exponentially stronger that Pcrk−1

on some tautologies. We prove Pcrk is exponentially stronger that Resk for some special forms of
matching principle. We also sketch a proof for an exponential lower bound on a weak form pigeon
hole principle. This chapter comes from paper

[33] N. Galesi, M. Lauria. Extending Polynomial Calculus with k-DNF Resolution, 2007.
Electronic Colloquium con Computational Complexity (TR07-041)

Chapter 6: Random CNF are hard for Pcrk. We study how the Pcrk proof system
behaves with respect to random 3-CNF. We adapt a restriction presented in [2] to Pcrk proofs
and we show that with high probability Pcrk requires exponentially big refutations for a randomly
generated 3-CNF. This chapter comes from paper

[33] N. Galesi, M. Lauria. Extending Polynomial Calculus with k-DNF Resolution, 2007.
Electronic Colloquium con Computational Complexity (TR07-041)

Chapter 2

Proof search techniques in Polynomial
Calculus

How to find proofs? In this chapter we discuss a general technique for proving theorems in propo-
sitional proof complexity by using polynomial calculus. We need concepts from basic commutative
algebra and ring theory. Such concepts are non obvious for computer scientists so we give a brief
reference about this topics in the Appendix A. This chapter doesn’t contain new results, but it is
necessary to put in context the whole algebraic proof complexity research area and to give a further
justification for the results proved in Chapter 3.

Degree is an indirect complexity measure with a lot of merits. In the next chapters several
analysis of this measure will lead to size lower bounds.

Here we want to show a proof search strategy for polynomial calculus whose performance is
heavily influenced by the degree required by the refutation.

We have seen that a polynomial calculus refutation consists in proving that a system S of
polynomial equations implies 1 = 0. In particular we need to prove that 1 can be written as a
algebraic combination of the polynomials in S. This is equivalent (see A) to show that 1 is contained
in the ideal generated by the polynomials in S.

We give a primitive proof strategy to prove the completeness of Pc. Such strategy has expo-
nential size in the number of variables involved in the system.

Trivial proof strategy: Consider incompatible polynomials p1 . . . pl. For any boolean as-
signment α there is a pi such that pi(α) = 1. Consider the multilinear characteristic function χα
for α. Then pi ` χα · pi ` χα. We deduce

∑
α χα which is 1.

2.1 Order of monomials in residue

In case of multivariate polynomials it is non obvious how to define canonical elements for residue
classes (see Definition A.12 in Appendix A). Consider for example the division of xy by x− y. By
simple symmetry we get that both xy = y2 and xy = x2 are true modulo x − y, and no choice
among them can be done by only relying on the algebraic structure. For a satisfactory definition
of residue modulo an ideal we need an order among polynomials. This requirement is inherent to
the algebraic structure of the polynomial ring, and it is needed to force the notion of a minimum
element in an equivalency class. Then residue in multivariate polynomials is defined by giving a
preferred order among monomials. More information about polynomial orders is in [28].

Graded lexical order: (<P) Consider variables x1, . . . , xn. Ordering among monomials is
completely specified by the following properties (here m and m′ are general monomials):

• xn <P xn−1 <P xn−2 <P · · · <P x2 <P x1

11

12 CHAPTER 2. PROOF SEARCH TECHNIQUES IN POLYNOMIAL CALCULUS

• If degree of m is smaller than degree of m′ then m <P m
′.

• If degrees of m and m′ are equal, the lexicographic order applies.

• 1 is the smallest monomial.

Once a total order among monomials is given, we can extend such order to polynomials. For a
polynomial αm+q such that m is the bigger monomial for which α is not zero, we call m the leading
monomial and αm the leading term. Consider polynomials p = αm+ q and p′ = βm′+ q′ where
m and m′ are the respective leading monomials.

• m <P m
′ implies p <P p

′

• m = m′ and q <P q
′ imply p <P p

′

• 0 is the smallest polynomial. (Notice that 0 <P 1)

We integrate here the Definition A.12 given in Appendix A with the specification of the canonical
element which represent each residue class.

Definition 2.1. The residue of a polynomial p modulo the polynomial ideal I is the smallest r
(according to grlex order) such that f ≡I r. We denote it as RI(f).

Notice that <P is not a total order: p and γp are incomparable for any γ 6∈ {0, 1}. This is not
an issue for the definition of residue: if f ≡I r and f ≡I γr with γ 6= 1 then we also have that
γf − f ≡I γr − γr = 0 so f ≡I 0. Then the residue is always a well defined minimum. Here we
give two simple properties about the residue operator in the polynomial ring.

Fact 2.2. Let I be a polynomial ideal and let p and q be two polynomials. Then:

• RI(p) ≤P p;

• RI(pq) = RI(p ·RI(q)).

2.2 Division algorithm

A correct algorithm of ideal membership easily follows from the division algorithm for multivariate
polynomials.

In this section we show how the division algorithm on polynomials is in fact a very efficient Pc
proof search strategy, both in term of degree and size. Consider the Algorithm 1 (page 13) where
we denote LT (p) as the leading term of a polynomial p.

The value of r at the end is the remainder of f divided by p1, . . . , pl. This algorithm has
several nice properties: it gives a Pc proof of f − r from polynomials p1 . . . pn. The proof has
polynomial size with respect to p1, . . . , pl and f − r. The degree of the proof is always below the
degree of f .

There are two problems arising in this proof search strategy: the following example shows that
the outcome is undefined unless we specify the order in which the polynomials p1 . . . pl are checked
for divisibility.

Division of x2y + xy2 + y2 by

order matters︷ ︸︸ ︷
(xy − 1, y2 − 1)

x2y + xy2 + y2 = (x+ y) · (xy − 1) + 1 · (y2 − 1) + x+ y + 1︸ ︷︷ ︸
remainder

2.3. GRÖBNER BASIS 13

Algorithm 1 Division

Input f , p1, . . . , pl

Output a1, . . . , al, r such that f = a1p1 + . . .+ alpl + r

1: procedure Division
2: g ← f
3: while g 6= 0 do
4: for i := 1 . . . l do
5: if LT (pi) divides LT (g) then
6: ai ← ai + LT (g)

LT (pi)

7: g ← g − LT (g)
LT (pi)

· pi
8: Break
9: if i > l then

10: r ← r + LT (g) , g ← g − LT (g)

Division of x2y + xy2 + y2 by (y2 − 1, xy − 1)

x2y + xy2 + y2 = (x+ 1) · (y2 − 1) + x · (xy − 1) + 2x+ 1︸ ︷︷ ︸
remainder

The example implies that different orders in the list of divisors lead to different results. In
particular we have x−y = (2x+ 1)− (x+y+ 1), and x−y cannot be divided by neither xy−1 nor
y2−1. Thus the division algorithm can’t prove that x−y is in the ideal generated by {xy−1, y2−1}.

Theorem 2.3. Given a set of polynomials p1, . . . pl and a polynomial f :

• If f divided by p1, . . . pl has remainder 0 then p1, . . . , pl ` f .

• The minimal size of such proof is polynomial in the size of pis and f .

• The minimal degree of such proof is less or equal than the maximum degree among pis and f .

2.3 Gröbner basis

The division algorithm does not produce a complete proof system. In this section we extend the
division algorithm to design a complete proof search technique. Notice that such strategy is well
known in algebraic geometry and it has been applied to Pc already in [25].

Given an ideal I we would like to find a set G = {g1, . . . , gt} ⊆ I such that

f divided by some order of G has remainder 0 ⇐⇒ f ≡I 0

This would give a way to prove ideal membership for any element of I. Such sets G are
called Gröbner basis of I (here we will call then just basis). We suggest to check [28] for more
information about them. At the very least a base is a generator for I. Our main interest in such
basis is because of the following easy facts:

Theorem 2.4. Consider and ideal I and one of its Gröbner basis, G.

• the division algorithm has the same result whatever ordering is considered for the elements is
G.

14 CHAPTER 2. PROOF SEARCH TECHNIQUES IN POLYNOMIAL CALCULUS

• for any f we get that f divided by G gives remainder RI(f).

Proof. Consider two different remainders r1 and r2 for two running of the division algorithm with
two different orders of G. Both r1 and r2 are not reducible by G, otherwise the division algorithm
wouldn’t have stopped. But r1 − r2 is a non zero polynomial in I. G is a base so we know r1 − r2

divided by some ordering of G has zero remainder. Then there is a monomial in r1 − r2 which
is reducible by G, which implies one of the two initial running shouldn’t have stopped. This is a
contradiction, and r1 is equal to r2. We denote this polynomial as r.

We now know that any running of f divided by G gives the remainder r. To check if r = RI(f)
we notice that neither RI(f) nor r have monomials which are divisible by a member of G, otherwise
they would fail to be minimal. We also know that r −RI(f) divided by G must have remainder 0
because G is a base. It follows that r is equal to RI(G).

The corollary to the properties shown above is that we can design an algorithm which check if
a propositional formula is a theorem.

Given a propositional claim C

1. Transform C in a DNF preserving validity.

2. Take the dual CNF (De Morgan’s laws).

3. Transform encode the CNF in a set of polynomials F .

4. Deduce a Gröbner base G from F (we will see how).

5. Divide 1 by G and check if remainder is 0 (i.e. check 1 ∈ G).

All we need is to specify the process for the deduction of a Gröbner base from the ideal gener-
ators.

2.3.1 Computation of a Gröbner base

Before describing the actual computation we want to comment the counterexample we gave for the
division algorithm. We saw that xy− 1, y2− 1 ` x− y, but neither xy− 1 nor y2− 1 divides x− y.
But we know that the polynomial x− y is an algebraic combination of the premises because of the
following computation

x− y = (y) · (xy − 1)− (x) · (y2 − 1)

Notice that a division can’t produce this algebraic combination because it requires degree 3 polyno-
mials, while target and premises have degree at most 2. The key fact is that x−y has no monomial
divisible by the leading term of a generator, and the algebraic combination of xy − 1 and y2 − 1
cancels those leading terms and highlights lower terms. Cancellation among leading terms does
the trick not only in this case, it is sufficient to obtain all elements of a Gröbner base. We will
introduce the Buchberger algorithm for basis computation. The main concept of this algorithm is
that of S-polynomials, which formalize cancellation of the leading terms.

Definition 2.5. Let p1 = αm1 + q2 and p2 = βm2 + q2 two polynomials such that m1 and m2 are
the respective leading monomials. Consider m the least common multiple of m1 and m2. We define

S(p1, p2) :=
m

αm1
· p1 −

m

βm2
· p2 =

m

αm1
q1 −

m

βm2
q2

It is called the S-polynomial of p1 and p2

2.4. BOUNDED DEGREE GRÖBNER BASE COMPUTATION 15

Algorithm 2 Buchberger’s Gröber base computation

Input F = {p1, . . . , pl}

Output G a Gröbner base for the ideal I

1: procedure Buchberger(F)
2: G← F
3: repeat
4: G′ ← G
5: for p, q ∈ G′, p 6= q do
6: s← remainder of S(p, q) divided by G′

7: G← G ∪ {s}
8: until G 6= G′

With S-polynomials in hand we finally give the Algorithm 2 (page 15) for Gröbner base com-
putation.

For the proof of completeness of Algorithm 2 we direct the reader to standard literature [28]:
the main idea is that by the means of S-polynomials we enrich the set of leading monomials in G.
The algorithm stops when for any leading monomial m of a polynomial in I there is a polynomial in
G whose leading monomial is a divisor of m. If G satisfies such property then the division algorithm
does a nontrivial step for any polynomial in I. By induction it is easy to prove that a polynomial
in I has remainder zero with respect to G.

Theorem 2.6. Given a set of polynomials F , Algorithms 2 computes a Gröbner base of the ideal
generated by F .

The algorithm deserves some comments. (a) The boolean axioms are in F , so at any step the
set G−F contains only multilinear axioms because the division against the boolean axioms removes
all squares. (b) There is at most one polynomial in G−F for any possible leading monomial. Also
no leading monomial occurs in a non leading position in G−F . This means that in a Gröbner base
there are O(nd) elements of degree d, each of them has size O(nd). This observation is important
to study the size of a Pc refutation by the means of the required degree.

2.4 Bounded degree Gröbner base computation

Degree matters when studying Pc proofs. The strategy discussed so far gives a refutation in Pc,
but there is no nontrivial upper bound on the size of the base computed.

Notice that the Algorithm 2 is not deterministic in the sense that at any step p and q are chosen
arbitrarily. This leads to different basis from the same set of generators. It would be nice to deduce
a small one.

Algorithm 2 does not give any guarantee about this requirement: consider two set of polynomial
equations over disjoint variables with the following properties: (a) they are both unsatisfiable (b)
the first one requires a big base (c) the second one has a small base. In this case there are choices
leading to a small base and others leading to a big one.

How difficult is to find a small Pc proof for propositional theorem? This problem will be
discussed in its full generality in Chapter 4. Here we give a first answer based on the degree
required by the proof. If we can keep the algorithm below a certain degree d then we can guarantee
the number of elements in the base is nO(d). An approach is that of giving priority to S-polynomials
which are deducible in degree less that d. Eventually the algorithm either finds a base or manages

16 CHAPTER 2. PROOF SEARCH TECHNIQUES IN POLYNOMIAL CALCULUS

the failure, for example by increasing the said degree threshold or claiming there is no proof of
degree less d.

It would be nice if a bounded degree version of the Buchberger algorithm could characterize
all ideal members provable in a fixed degree. Then as in the general case the algorithm would be
complete for bounded degree Pc proofs.

This is indeed true and the bounded version of the algorithm is very similar to the unbounded
one. Operation used in Algorithm 2 are divisions and S-polynomials. Divisions never increase
the degree, while the Pc deduction of an S-polynomial may require intermediate steps of degree
higher than the ones of previous steps. To enforce degree below d we need to modify the step of
the S-polynomial computation.

Algorithm 3 Bounded degree Buchberger’s Gröber base computation

Input F = {p1, . . . , pl}, d.

Output A set of d degree polynomials in the ideal I

1: procedure Buchberger(F ,d)
2: G← F
3: repeat
4: G′ ← G
5: for p, q ∈ G′, p 6= q do
6: if S(p, q) is not deducible for p, q in degree d then
7: continue
8: s← remainder of S(p, q) divided by G′

9: G← G ∪ {s}
10: until G 6= G′

The algorithm describes a Pc proof of degree at most d. Actually it gives a the complete proof
strategy we are looking for. This statement is not proved here.

Theorem 2.7. Given a set of polynomials F and a positive integer d, Algorithm 3 outputs a set
Gd such that for every p provable from F in degree at most d, p divided by Gd (in any order) gives
remainder 0.

To have a degree d proof (or to check it does not exist) is sufficient to follow the next procedure:

1. Transform C in a DNF preserving validity (standard).

2. Take the dual CNF (De Morgan’s laws).

3. Encode the CNF in a set of polynomials F .

4. G0 = F

5. Compute G1 :=Buchberger(G0, 1)

6. If 1 ∈ G1 accept.

7. Compute G2 :=Buchberger(G1, 2)

8. If 1 ∈ G2 accept.

9. Compute G3 :=Buchberger(G2, 3)

2.5. DEGREE COMPLEXITY OF A PROOF 17

10. ...

11. Compute Gd :=Buchberger(Gd−1, d)

12. If 1 ∈ Gd accept.

This procedure outputs a base of lowest degree possible, because as soon as there is a degree d′

refutation, then Gd′ contains 1 by the Theorem 2.7.

Corollary 2.8. Given propositional formula with a Pc proof of constant degree, then Algorithm 3
outputs a proof in polynomial time.

Corollary 2.9. There exists a formula such that any Resolution proof has exponential size, and
Algorithm 3 outputs a Pc proof in polynomial time.

Proof. (sketch) Consider a 3-regular bipartite expander graph with respectively n and n+1 vertices
on the two sides. The principle stating that there is no matching between the two sets of vertices
can be proved in Pc using constant degree, and then Algorithm 3 accepts in polynomial time.

Any Res proof for this principle requires linear width for Theorem B.10 in Appendix B. The-
orem 2.10 (later in this chapter) implies Res requires exponential size proof.

2.5 Degree complexity of a proof

The running time of the Algorithm 3 heavily depends on the degree it considers before stopping.
Then it is important to study degree complexity of algebraic proof. Several questions arise regarding
the Algorithm 3:

• Does it exist a propositional theorem whose proof in Pc requires high degree?

• Does it exist a theorem for which exists a short proof but the required degree is high?

• Does it exist a theorem for which any short proof has high degree but there are low degree
proofs?

The first question has a well known positive answer. The works in [15, 7] give several examples
of propositional theorems which require linear degree in the number of variables. In Chapter 3
we answer positively the second question by showing a propositional theorem on n variables with
polynomial size proof and required degree

√
n.

Regarding the third question, the negative answer is given in [25, 17, 15, 37, 3] for Resolution
and Polynomial Calculus. In this works the width and degree measures are related with the size
measure. It turns out that we can reduce the degree of a Pc proof to some extent by increasing its
size:

Theorem 2.10. Let F be a set of polynomials on n variables and degree at most d. If there is a
Pc or Pcr refutation of F of size S then there is a refutation of F of degree at most D where

D ≤ O(
√
n logS) + d

The previous statement tells us that we can obtain a low degree proof when the size S is not too
big. Turning the argument around we get an important corollary: proving degree lower bound for
Pc immediately gives size lower bound for both Pc and Pcr. This is because degree complexity
is the same in both proof systems.

18 CHAPTER 2. PROOF SEARCH TECHNIQUES IN POLYNOMIAL CALCULUS

Corollary 2.11. Let F be a set of polynomials on n variables and degree at most d. If Pc

refutations require degree at least D then any Pc or Pcr refutation has size at least 2Ω(
(D−d)2

n
).

Proof. (Theorem 2.10, adapted from [3]) We prove the claim for a Pcr refutation size S. Fix
D =

√
n logS. Let S∗ the number of monomials of degree greater than D in such proof, and E the

smallest integer such that S∗ <
(
1− D

2n

)−E . We proceed by double induction on E and n to prove
that there exists a refutation of degree D+E + d. If E = 0 then S∗ = 0 so the D+ d degree proof
exists. Assuming E > 0 we pick x to be the variable present in the biggest number of monomials.
By counting we know x appears in at least D

2nS
∗ monomials: restricting variable x to 0 (and its

corresponding negation to 1) gives a proof of F �x=0 with at most
(
1− D

2n

)−E+1 monomials of
degree above D. Then by induction F �x=0` 1 in degree at most D+E−1 +d. For any p+xq ∈ F
we get x̄(p+ xq) = x̄p+ x̄xq ` x̄p = x̄((p+ xq)�x=0). We can conclude F ` x̄ · F �x=0` x̄ in degree
D+E+d. It is easy to check that x̄, F ` F �x=1 in degree d+1. By inductive hypothesis F �x=1` 1
in degree at most E +D + d. Concluding: F ` F, x̄F �x=0` F, x̄ ` F �x=1` 1. The proof described
so far is a Pcr one. By substituting any x̄ variables with 1 − x we obtain a Pc refutation of the
same degree.

This Corollary 2.11 tells us that high degree complexity does limit any proof search strategy,
not only the ones determined by the Buchberger algorithms. From the statement we also notice
that degree complexity implies the same size lower bound for both Pc and Pcr.

2.5.1 Scheme of degree lower bounds

In Chapter 3 and 4 we will prove two lower bounds on the degree required by two specific refutations.
Here we give an outline of the proof strategy.

Consider a set of polynomials F and an operator ψ such that the following properties hold:

ψ(p) = 0 for each p ∈ F
ψ(p+ q) = ψ(p) + ψ(q)
ψ(x · p) = ψ(x · ψ(p))

Notice that for any Pc deduction, if ψ maps the premises to zero then it also maps to zero the
consequence. Thus everything polynomial deducible from F is in the kernel of ψ. This means either
ψ(1) = 0 or F is not refutable (i.e. satisfiable), and the two events cannot happen simultaneously.

Following the same intuition we consider a “pseudo-homomorphism”, which is indistinguishable
from an actual homomorphism by any refutation of degree below a certain threshold d. More
precisely we want φ such that

φ(p) = 0 for each p ∈ F
φ(p+ q) = φ(p) + φ(q)
φ(x · p) = φ(x · φ(p)) if p has degree less than d

It is clear that any polynomial which is deducible by Pc in degree less than or equal to d is in
the kernel of φ. Thus if the initial set F has a refutation of degree at most d then φ(1) = 0.

If we exhibit an operator which is a pseudo-homomorphism against deductions up to degree d,
it maps F to 0 and does not map 1 to 0 then we get a lower bounds of degree d for any refutation
of F .

Chapter 3

Graph Ordering Principle

Investigating the efficiency of the proof search algorithm proposed by Ben-Sasson and Wigderson
[17], Bonet and Galesi [18, 19] proved that the class of formulas GTn defined in [52] has polynomial
size Resolution proofs but requires a Ω(n) (notice that GTn uses n2 variables). Thus they proved
the optimality for the algorithm proposed in [17]. In [18, 19, 20] they tried to extend the previous
results to PC. Informally they asked the following question: what is the efficiency of Algorithm 3
when compared to [17]? Can this algorithm perform better? They conjectured this is not the case
in general, suggesting that some modifications of the GTn principle would require linear degree
refutations in Pc. They gave some partial results in this direction, showing that a modification
of the Pigeon Hole Principle admits polynomial size Resolution refutations but requires O(log n)
degree in Polynomial Calculus [20].

We now show a formula for which there exists a short Polynomial Calculus refutation but
nevertheless this formula requires high degree to be proved. The required size and the required
degree of this formula is tight for the size degree trade-off discussed in Theorem 2.10. This solves
the conjecture of Bonet and Galesi [18, 19].

3.1 The principle

The Graph Ordering Principle [50] states that any graph with any total order on its vertices has
at least a sink vertex: a vertex whose neighbors are later elements in the total order. This is a
variant of the linear ordering principle (GTn) defined in [52] and used in [19] for proving width-size
tradeoff optimality.

For any two distinct numbers a, b ∈ [n], consider a variable xab to be 1 is a is less than b in the
total order, and 0 if a is greater than b.

We can easily express GTn in resolution

∀a < b xab ∨ xba
∀a < b x̄ab ∨ x̄ba
∀a, b, c xab ∧ xbc =⇒ xac

∀a
∨
b 6=a

xba

The x variables express the order relation. The first two conditions ensure this relation is
antisymmetric, the third requires it to be transitive. The fourth condition requires that for any
vertex there is a smaller element. This is clearly unsatisfiable, because any finite ordered set has a
minimum.

19

20 CHAPTER 3. GRAPH ORDERING PRINCIPLE

This formula has short refutation in Polynomial Calculus (actually it can be easily refuted in
Resolution). This fact has no consequences of size-degree tradeoff because the initial degree required
to define the formula is equal to the number of vertices which is non constant in the number of
variables in the formula itself.

To solve this problem we use Graph Ordering Principle on a graph G (Gop(G)). This is a
modified version of GTn appeared in [50] for similar purposes. Gop(G) requires that any vertex
has a smaller adjacent. This formula is unsatisfiable for any graph G because the least element in
the order is a sink.

Furthermore the propositional formulation of Gop(G) is given in a slightly different way than
GTn. The transitivity for three vertices is expressed by two clauses which exclude the possibility
of any cyclic orientation.

∀u < v xab ∨ xba
∀u < v x̄ab ∨ x̄ba
∀u < v < w xuv ∨ xvw ∨ xuw
∀u < v < w xuv ∨ xvw ∨ xuw
∀u

∨
v∈Γ(v)

xvu

Notice that this principle is expressible in width equal to the maximum degree of the underlying
graph G. For any graph of n vertices, this principle subsumes GTn (i.e. Gop(Kn)) by weakening.
Thus it has a small refutation in term of the number of vertices. In the following we will give a
degree lower bound of Ω(n), which is linear in the degree achieved by the known refutations.

We now encode the formula as polynomials. Notice that with the exception of boolean axioms
all of them are monomials.

∀u, v x2
uv − xuv

∀u < v 1− xuv − xvu
∀u < v < w xuw · xwv · xvu
∀u < v < w xuv · xvw · xwu
∀u

∏
v∈Γ(u)

xuv

Boolean axioms in the first two rows imply the relation is a well defined complete orientation.
The third and fourth row state that a 3-cycle is a forbidden orientation. The last set of equations
means that a sink in the graph is forbidden: for a vertex u we name Mu the corresponding poly-
nomial. We name MU the polynomials corresponding to a set of vertices U . We denote as T the
set of all other polynomials.

3.2 Polynomial Size refutation

GTn has a Resolution refutation of polynomial size [19]. This immediately implies there exists a Pc
refutation of Gop(G) because (1) Gop(G) subsumes GTn, (2) Pcr simulates Resolution, (3) the
principle already contains opposite variables, so there is no difference between Pc and Pcr in this
case. For completeness we now give a refutation of Gop(G) in Pc. Such proof is an adaptation of
the ones in [52, 19, 50], for our Pc formulation.

3.3. DEGREE LOWER BOUND FOR GRAPH ORDERING PRINCIPLE 21

Theorem 3.1. Let G be an n vertices graph. Gop(G) has a degree n Pc refutation of size O(n4).

Proof. We deduce Gop(Kn) from Gop(G) by repeated application of product rule from
∏
v∈Γ(u) xuv

to
∏
v 6=u xuv for any u ∈ V (G). We now proceed by giving a polynomial size deduction of Gop(Kn−1)

from Gop(Kn). Fix an index i < n. Then for any j 6∈ {i, n} we deduce xjnxi1xi2 · · ·xi(n−1) by
applying the following scheme

xi1xi2 · · ·xi(n−1)xin xijxjnxni
...

xjnxi1xi2 · · ·xi(n−1)xin

xjnxi1xi2 · · ·xi(n−1)xni

...
xjnxi1xi2 · · ·xi(n−1)

Denote Ai = xi1xi2 · · ·xi(n−1). For any j < n we just deduced Aixjn, which easily implies
Ai − Aixnj by boolean axioms. Also notice that Ai − Ait and Ai − Ait′ imply Ai − Aitt′. This
observation allows to prove Ai −Ai

∏
j<n xnj . By using the axiom

∏
j<n xnj we get Ai. We repeat

for all i and we obtain Gop(Kn−1). In n − 3 steps we deduce Gop(K3), which easily implies 1 in
constant degree. This refutation needs O(n4) steps.

3.3 Degree lower bound for Graph ordering principle

In this section we show that graph ordering principle requires the biggest degree possible for a
formula with a polynomial size refutation. Ordering principles have been considered in [19] to
prove the optimality of the size-width relation [17] for resolution. We do the same for polynomial
calculus.

A simple example shows that the structure of the graph must be taken in consideration for the
lower bound. Indeed consider G to be the path graph of n vertices 1, 2, . . . n. In this case Gop(G)
consists in polynomials

xn(n−1)

x12

xi(i−1)xi(i+1) ∀1 < i < n

For any i we get that {xi(i+1) x(i+1)ixi(i−1)} ` xi(i−1). By induction we can deduce x21. Also x12

is in the principle, thus 1 is deducible. This proof has degree 2, thus no nontrivial degree lower
bound for Gop(G) exists for general a graph G.

Theorem 3.2. There exists a uniform infinite family G of simple graphs of constant degree such
that for any G in G the principle Gop(G) has polynomial size in |V (G)| and any Pc refutation of
Gop(G) requires degree Ω(|V (G)|).

As we said previously we require specific conditions on the graph G to prove any lower bound
for Gop(G). In particular we need a graph with good expansion properties. Given such graph we
exhibit a linear operator L which maps to 0 all low degree consequences of Gop(G), and does not
map 1 to 0. This means 1 is not derivable in low degree.

Lemma 3.3. Let G be a (r, c)-vertex expander. There exists a linear operator L defined on poly-
nomials such that

1. L(p) = 0, for all polynomial p ∈ Gop(G)

22 CHAPTER 3. GRAPH ORDERING PRINCIPLE

2. for each monomial t and variable x, if deg(t) < cr/4, then L(x · t) = L(x · L(t))

3. L(1) = 1.

We postpone the proof of this lemma to the end of the section. Now we show that Lemma 3.3
implies the following corollary.

Corollary 3.4. If G is an (r, c)-vertex expander then there is no Pc refutation of Gop(G) of
degree less than or equal to cr/4.

Proof. Assume for the sake of contradiction that such refutation exists. Apply L on all its lines.
Any premise or axiom in Gop(G) is set to 0 because of property (1) of L as stated by Lemma
3.3; any result of the sum rule is set to 0 if the premises are set to 0 because of linearity of L; any
application of the product rule of Pc keeps all terms below degree cr/4 by assumption, so property
(2) of L implies that the result of such application is 0. By induction on the lines of the proof we
get that the whole refutation is mapped to 0. This is a contradiction because the last line (i.e the
polynomial 1) is not mapped to 0 according to property (3) of L.

In the following we assume G to be given and to be an (r, c)-vertex expander. All the definitions
below are given with respect to such graph.

We now give an overview of the proof of Lemma 3.3. We need a linear operator which captures
low degree reasoning, i.e. its kernel contains all polynomials deducible in low degree from Gop(G).

For any polynomial p in a refutation of Gop(G) we consider a vertex u ∈ G such that Mu is a
required in the proof of p. We may think of a polynomials which requires few vertices as a “locally
deducible” polynomial.

We now focus on monomials. For a term t in the proof we isolate a set of relevant vertices (
the Support in Definition 3.5) such that t depends on them. We prove that if G is a good vertex
expander, then low degree derivable terms in a refutation of Gop(G) depend on supports of small
size (Lemma 3.6). We also prove that for locally deducible terms the support is sufficient to deduce
them (Lemma 3.7, 3.8, 3.9). Then any line in a low degree deduction can be rewritten as linear
combination of polynomials, each of them deducible from a small support. We define the operator L
in such a way its kernel contains the ideals generated by small supports so that anything deducible
in low degree is in its kernel. Since by construction the kernel does not contain 1, we get the degree
lower bound.

Definition 3.5. We call V ertex(p) the set of vertices which appear in the variables occurring in
p. Given a set of vertices U we define the inference relation U in this way: For A,B ⊆ [n],

A U B if |B| ≤ r

2
and Γ(B) ⊆ A ∪ U

Sup(U), the support of U , is defined as the closure of ∅ with respect to U . We denote by
Sup(p) the set Sup(V ertex(p)) for any polynomial p.

The notion of support is closely related with the notion of neighborhood in a graph: Sup(U) is
the maximal set of vertices whose neighborhood is inside U and which is not big enough to break
the expansion barrier r. The following lemma gives the link between the vertex expansion and
degree of monomials: a small set of vertices (hence a low degree term) has small support.

Lemma 3.6. If a set U has size less or equal than cr/2 then Sup(U) has size less or equal than
r/2. If a monomial t has degree less than cr/4 then Sup(t) has size less or equal than r/2.

3.3. DEGREE LOWER BOUND FOR GRAPH ORDERING PRINCIPLE 23

Proof. Let Sup(U) = I1 ∪ I2 ∪ I3 ∪ · · · ∪ Il where each Ii is the set added in the i-th step of the
inference. Assume it has size strictly greater than r/2, then there is a step j where such size is
overcome. Let us denote A = I1 ∪ . . . ∪ Ij−1 and I = Ij . Then |A| ≤ r/2 and |A ∪ I| > r/2. Also
|I| ≤ r/2 because of the size constraint in the definition of U . Then |A∪ I| ≤ r and hence by the
vertex-expansion condition |Γ(A ∪ I)| > cr/2. This proves the first part since Γ(A ∪ I) ⊆ U .

The second part follows since the vertices appearing in term t are at most twice the degree of
t.

Lemma 3.7. Let t be a term. For any not empty set of vertices A of size less or equal than r/2 and
such that A∩Sup(t) = ∅, there exists an edge {u, v} in G such that v ∈ A, u 6∈ Sup(t)∪A∪V ertex(t).

Proof. By definition of Sup(t) and the hypothesis of the lemma, it follows that Sup(t) 6 V ertex(t) A.
Then Γ(A) 6⊆ Sup(t) ∪ V ertex(t), therefore there is an vertex in Γ(A)/(Sup(t) ∪ V ertex(t)).

A partial assignment ρ to the variables of Gop(G) is a u-cta (critical truth assignment) when
it sets u as a global minimum.

ρ =

{
xa,u = 1 ∀a, a < u

xu,a = 0 ∀a, u < a

Using this critical assignment we can show how the residue with respect to a small set of
polynomials in M[n] is not smaller than the residue with respect to the support. Recall the definition
of residue with respect to a polynomial ideal RI(p) in Chapter 2, Definition 2.1.

Lemma 3.8. Let t be a term. Let I be a set of vertices such that |I| ≤ r/2 and I ⊃ Sup(t). Then
there exists a v ∈ I/Sup(t) such that:

RT ,MI
(t) = RT ,MI−{v}(t)

Proof. Applying Lemma 3.7 to t and I/Sup(t) we get an edge {u, v} such that v ∈ I/Sup(t) and
u 6∈ I ∪ V ertex(t). Let ρ be a u-cta. Note that any polynomial in T containing the vertex u is
satisfied by ρ. Any other polynomial in T is not touched, so T �ρ⊆ T . Moreover since u 6∈ V ertex(t),
t �ρ= t. Finally note that MI �ρ⊆ MI−{v} since ρ is setting to 0 at least Mv. Recall that if A ` p
and B ⊇ A then B ` p. Thus we have the following derivations:

T ,MI ` t−RT ,MI
(t) By definition of R (3.1)

T �ρ,MI �ρ ` t�ρ −RT ,I(t)�ρ By restriction from (3.1) (3.2)
T ,MI−{v} ` t−RT ,MI

(t)�ρ By previous observations on (3.2) (3.3)

From (3.3) and minimality of the residue we then have that RT ,MI−{v}(t) ≤P RT ,MI
(t) �ρ.

Moreover, since T ,MI ` t − RT ,MI−{v}(t), we have that RT ,MI
(t) ≤P RT ,MI−{v}(t), also by mini-

mality. Finally RT ,MI
(t) �ρ≤P RT ,MI

(t) holds since a restriction can only decrease the order of a
polynomial. Hence it must be RT ,MI−{v}(t) = RT ,MI

(t).

Lemma 3.9. Let t be a term. For any set of vertices I of size less than or equal to than r/2 and
such that I ⊇ Sup(t), the following holds:

RT ,MI
(t) = RT ,MSup(t)

(t)

Proof. If I = Sup(t) then RT ,MI
(t) = RT ,MSup(t)

(t). If I is strictly bigger than S, then by lemma
3.8 there is a vertex v ∈ I/Sup(t) such that RT ,MI

(t) = RT ,MI−{v}(t). The lemma follows by
induction on the size of I/Sup(t).

24 CHAPTER 3. GRAPH ORDERING PRINCIPLE

Lemma 3.10. For any term t, V ertex(RT ,MSup(t)
(t)) ⊆ Sup(t) ∪ V ertex(t).

Proof. Assume for the sake of contradiction that there is a node u ∈ V ertex(RT ,MSup(t)
(t)) not in

V ertex(t) ∪ Sup(t). Consider a u-cta ρ. By an argument analogous to that of Lemma 3.8 we then
have RT ,MSup(t)

(t) ≤P RT ,MSup(t)
(t)�ρ<P RT ,MSup(t)

(t).

We are ready to give the proof of Lemma 3.3.

Proof. Lemma 3.3
For any monomial t, the linear operator L(t) is defined by

L(t) := RT ,MSup(t)
(t)

and is extended by linearity to any polynomial.
First we prove that for any polynomial p ∈ Gop(G), L(p) = 0. If p is in T , then RT (p) = 0.

Now, L(p) =
∑
βiL(ti) ≤P

∑
βiRT (ti) = RT (p) = 0. For any axiom Mv let Mv = t + w, where

t is the leading term. Since Γ(v) ⊆ V ertex(t), then v ∈ Sup(t). Hence L(v) = L(t) + L(w) ≤P
RMv(t) + L(w) = −w + L(w) ≤P −w + w = 0.

Let us prove that L(xt) = L(xL(t)) for any term t of degree strictly less than cr
4 . Notice

that by monotonicity of Sup function, Sup(xt) ⊇ Sup(t). Moreover since deg(xt) ≤ cr
4 , then by

Lemma 3.6 we get |Sup(xt)| ≤ r/2. Therefore we have the following chain of equalities by applying
respectively: in (3.4) the definition; in (3.5) by Fact 2.2; in (3.6) the monotonicity of Sup and
Lemma 3.9; in (3.7) again the definition.

L(xt) = RT ,MSup(xt)
(xt) (3.4)

= RT ,MSup(xt)
(xRT ,MSup(xt)

(t)) (3.5)

= RT ,MSup(xt)
(xRT ,MSup(t)

(t)) (3.6)

= RT ,MSup(xt)
(xL(t)) (3.7)

Let us write xL(t) as a polynomial
∑
αiri. The following inclusions hold respectively: in (3.8)

because ri is a monomial in the polynomial expansion of xL(t); in (3.9) by Lemma 3.10; in (3.10)
by monotonicity of Sup.

V ertex(ri) ⊆ V ertex(x) ∪ V ertex(L(t)) (3.8)
⊆ V ertex(x) ∪ V ertex(t) ∪ Sup(t) (3.9)
⊆ V ertex(xt) ∪ Sup(xt) (3.10)

From the definition of Sup and the previous inclusions it follows that Sup(ri) ⊆ Sup(xt).
Finally the property (2) of the operator is obtained from the following chain of equalities

respectively motivated: in (3.11) by definition; in (3.12) by Lemma 3.9 applied to Sup(ri) and
Sup(xt); in (3.13) by linearity; in (3.14) by the form of xL(t); finally in (3.15) by equalities (3.4)-
(3.7).

L(xL(t)) =
∑

αiRT ,MSup(ri)
(ri) (3.11)

=
∑

αiRT ,MSup(xt)
(ri) (3.12)

= RT ,MSup(xt)
(
∑

αiri) (3.13)

= RT ,MSup(xt)
(xL(t)) (3.14)

= L(xt) (3.15)

3.3. DEGREE LOWER BOUND FOR GRAPH ORDERING PRINCIPLE 25

Finally for the property (3) observe that the support of a constant is the empty set, so L(1) =
RT (1) = 1 since T is satisfiable.

To conclude the proof of Theorem 3.2 is sufficient to exhibit a uniform family G = {Gn}n∈N of
graph with Θ(n) vertices, constant degree such that any member is a (Θ(n),Ω(1)) vertex expander.
Such families are known in literature [36].

Relation with size-degree tradeoffs

In Chapter 2 we discuss a known relation among size and degree for refutations in Polynomial
Calculus and Polynomial Calculus with Resolution. We recap the tradeoff

S ≥ 2Θ
(D−d)2

v D ≤ O(
√

(v logS)) + d

where S and D is respectively the smallest size and degree of a refutation of the theorem, and d
and v are respectively the degree and the variables of its polynomial formulation. Gop(G) is tight
in term of the exponent because it has v = Θ(n2), D = Θ(n), d = O(1) and S = nO(1). No better
strategy exists to reduce the degree of a proof than the one described in Chapter 2.

This trade-off is trivially optimal for principles with exponential size proofs: Razborov in [47]
showed that any Pc refutation for PHPmn requires degree n. PHPmn has also a trivial proof of size
2O(n). Bonet and Galesi in [18, 19] asked to prove the trade-off optimality for formulas having
polynomial size Resolution refutations. They had partial results in this direction: they proved that
a modification of the pigeon hole principle has efficient refutations in Resolution but requires degree
O(log n) [20]. Our result on Gop(G) exponentially improves the results of [20] showing a linear
degree lower bound for a formula efficiently refutable in Resolution, then closing the problem left
open in [18, 19].

Chapter 4

Non Automatizability of Polynomial
Calculus

Automated theorem proving is one of the most important field in Computer Science, if not the
application computers were invented for. It has been investigated both from a theoretical and
an applied point of view. Not only it is widely conjectured that for any proof system there are
tautologies requiring proof of exponentially long proofs. But also it is believed that there are
tautologies whose short proofs elude any efficient algorithm. This is related with the concept of
automatization which has been introduced in Chapter 1.

We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not autom-
atizable unless W[P]-hard problems are tractable in a specific sense. This extends to Polynomial
Calculus the analogous result obtained for Resolution by Alekhnovich and Razborov [8].

In Chapter 2 we discussed about the inefficiency of the Buchberger algorithm for tautologies
which require high degree proofs. That was a very peculiar algorithm. Now we consider any kind
of proof searching algorithms for a system Pc, Pcr and HN.

The result comes from the reduction of Alekhnovich and Razborov [8]. We extract the part of
their proof which actually depends on the Res proof system and we adapt such part to our proof
systems.

The key step is a degree lower bound for a formula encoding the decision version of the problem
known as minimum monotone circuit satisfying assignment (MMCSA). We refer the reader to
Section B.3 for more details about this problem and its relation with Parameterized Computational
Complexity. We prove the needed degree lower bound with the technique seen in Chapter 3.

The chapter is organized as follows: in Section 4.1 we give a sketch of the non automatizability
proof; in Section 4.2 we give the polynomial encoding of MMCSA; Section 4.3 contains the proof
of the degree lower bound; finally in Section 4.4 we combine together the degree lower bound with
previous results of [8] to get the non automatizability of HN, Pc and Pcr.

4.1 Proof Strategy

The optimization problem of Minimum Monotone Circuit Satisfying Assignment (MMCSA) is
defined as follows

Instance A monotone circuit C over ∧,∨ in n variables with 0-1 variables.

Solution An input a such that C(a) = 1

Objective function Minimize w(a), the Hamming weight of a.

27

28 CHAPTER 4. NON AUTOMATIZABILITY OF POLYNOMIAL CALCULUS

We denote as w(C) the minimum for the instance C. In [8] Alekhnovich and Razborov use
the automatization of Resolution as a primitive to efficiently solve MMCSA. The idea can be
summarized in three independent steps.

1. Given a monotone circuit C, build an unsatisfiable CNF F (C,w, r) and prove that the size
of the shorter proof is strongly related to the size of minimum satisfying assignment of the
circuit.

2. Assuming automatizability of the proof systems, use the automatization algorithm to find a
proof of approximately small size. This gives an approximation of the minimum assignment
size.

3. Apply a (randomized) gap amplification procedure to improve the approximation factor up
to an error smaller than one (i.e. obtain the exact value).

Only the first step depends on the proof system. Using a slight modification of the formula
built in [8] we will prove the first step for algebraic proof systems. In the end we are going to prove
the following theorems.

Theorem 4.1. If any of HN, Pc or Pcr is automatizable, then for a fixed ε > 0 there exists
an algorithm Φ working on monotone circuits C which runs in time exp

(
w(C)O(1)

)
|C|O(1) and

approximates the value of w(C) to within a factor (1 + ε).

Theorem 4.2. If HN, Pc or Pcr are automatizable then W[P]=coFPR.

W[P] and coFPR are well-known complexity classes from parameterized computational com-
plexity theory (see Section B.3 or the book [29]). The decision version of MMCSA is complete for
W[P], so it seems unlikely that there could by a fixed parameter algorithm for it.

To get Theorem 4.1 we prove the following reduction as in [8]: from a circuit C we define the
formula F (C,w, r) such that next two lemmas hold.

Lemma 4.3. Let C be a monotone circuit, and w an integer parameter. Any Pcr refutation of
F (C,w, r) requires degree at least rmin{w(C)− 1, w}.

Lemma 4.4. Let C be a monotone circuit, and w an integer parameter. Assume r = Θ(w):

1. Any Pcr refutation of F (C,w, r) has size at least

2Ω(wmin{w(C),w})

2. If w(C) ≤ w then there is a HN proof of F (C,w, r) of size

|C| · 2O(w·w(C))

4.2 The tautology F (C, w, r)

Let C be a monotone circuit on n inputs of size polynomial in n. Let w be a parameter whose
intended meaning is to guess a value for the value of w(C). We also fix r to be a parameter which
will be used to amplify the degree hardness of the principle. Such r is intended to be Θ(w).

A combinatorial object called Paley matrix is used in the construction. Such matrix has the
property that any projection on a small set of columns consists of all possible binary strings with

4.2. THE TAUTOLOGY F (C,W,R) 29

an almost fair frequency. Here follows an example of a 7×7 matrix where any projection on 2 rows
or columns contains {00, 01, 10, 11}.

0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0

Let q ∈ [24w + 1, 24w+1] be an arbitrary prime1, and consider the matrix A ∈ {0, 1}q×q where

cell (i, j) contains 1 iff i − j is a quadratic residue modulo q, and 0 otherwise2. It is well known
[39, 9] that any projection on w rows or columns contains the whole set {0, 1}w.

From C, w, r and A, we are going to define a set of polynomials F (C,w, r). This set encodes the
property that there exists a set of n columns of the matrix A that contains no satisfying assignment
for the circuit C. This claim is unsatisfiable if w(C) < w because whatever the selection of n
columns is, the w(C) columns corresponding to the 1 coordinates of the smallest assignment will
contain a full 1 string which satisfies the circuit C.

The n columns are selected by n partial functions called generators. These functions will be
defined later.

For technical reasons, widely explained in [8], we add complexity to the principle: instead of
feeding inputs to a single circuit, we feed them to several copies of the same circuit, and we select
one of those copies by a partial function called activator. In the principle we will express the fact
that only the gates of the active circuit has to perform the computation correctly.

The principle claims that exists a choice for the ’generators and activators’ such that: (a) values
for such inputs are defined and (b) no circuit output 1.

It is clear that even in this version of the principle w(C) < w implies that for any choice the
w generators produce a row with w ones in the appropriate coordinates. This row is fed to a set
of r copies of the circuit C. One of them is active and has to propagate the computation through
the gates. That circuit copy outputs 1, which is in contradiction with the claim no active circuit
output 1.

Let s be a parameter we will specify later and is intended to be Θ(w).
Circuit family: let q = 2Θ(w) the size of the matrix A. We consider an array of q × r copies

of circuit C, indexed as Cik.
Activators: for all i ∈ [q] we consider a possibly partial function Ai : {0, 1}s 7→ [r] which

selects one of the circuit among Ci1 · · ·Cir. Only the selected circuit propagates correctly the
values through the gates. The other circuits are relieved from the computation.

Generators: for j ∈ [n] we consider Gj : {0, 1}s → {0, 1}q which generates a column vector of
the matrix A. Thus {G1 · · ·Gn} produce the q × n matrix A. For all i ∈ [q] the i-th row of such
matrix is fed to Ci1 · · ·Cir as input.

Definition 4.5. A boolean function f is r-surjective if for any partial assignment ρ such that
|ρ| ≤ r the function f �ρ is surjective.

Fact 4.6. For any β and any surjective function g : {0, 1}l → S there exists a βl-surjective function
f : {0, 1}O(βl) → S.

1Such a prime exists because of Bertrand’s postulate.
2Note that in literature the original Paley Matrix is defined in a different fashion with 0 values on diagonal, 1 for

quadratic residues and -1 for non residues. But this is not an issue here

30 CHAPTER 4. NON AUTOMATIZABILITY OF POLYNOMIAL CALCULUS

Proof. Consider a surjective decoding function D : {0, 1}αl −→ {0, 1}l of a code with distance
≥ 2βl. Such decoder exists [54] with α proportional to 2β. Fix f := g ◦ D, it satisfies the
requirements. To see this consider the restricted βl bits as “error” bits. Any message can be
decoded from the proper codeword with those βl bits changed.

Generator and Activators with r-surjectivity and parameter s. We need both activators
and generators to be r-surjective functions on domain {0, 1}s. See [8] for an extensive discussion
about this requirement.

The output of a generator function Gj is completely specified by the choice of a column in the
Paley matrix, the output of the activator Ai is specified by the choice of a number in [r]. Thus
Θ(max{w, log r}) input bits are enough to define both surjective generators and selectors. Then
by Fact 4.6 we know s = Θ(w + r) is more than enough to have the desired r-surjective activators
and generators.

Because of the properties of the Paley matrix, of the generators and of the activators the
following fact holds.

Fact 4.7. For any monotone circuit C, and any w > w(C), at least a circuit among {Cik}ik outputs
1 whatever the assignments for activators and generators are.

4.2.1 Polynomial encoding of F (C, w, r)

We now describe the actual set of polynomials which encode the negation of Fact 4.7. We will use
the following notation.
Notation reference

C the monotone circuit.

n input variables in the circuit C.

v index refers to a the gates of C. It goes from 1 to |C|. We assume that first 1..n gates
correspond to input gates. Gate indexed by |C| corresponds to output gates.

w(C) is the minimum hamming weight of an assignment satisfying C.

q = 2Θ(w) a prime number, size of the Paley matrix.

r is a parameter.

i index used to denote a row in the Paley matrix, a selector function and an input fed to the
circuits. It goes from 1 to q.

j index used to denote an input variable of C and one of the generator functions. It goes from
1 to n.

k index used to denote one of the possible outcomes of the selector functions. It goes from 1 to
r.

Cik k-th copy of C, fed with the i-th row generated by generator functions.

Ai i-th activator function which selects among circuits Ci1, . . . , Cir.

Gj j-th generator function which choose the j-th columns to feed as j-th input of the circuits.

s length of the binary input of activators and generators, it is Θ(w + r).

4.2. THE TAUTOLOGY F (C,W,R) 31

xj(α), yi(β) For a vector α, β ∈ {0, 1}s we denote as xj(α) and yi(β) the characteristic polynomials of
α and β respectively on variables xj1, . . . , xjs and yi1, . . . , yis. For example xj(001 . . .) is
x̄j1x̄j2xj3 · · · .

The polynomial encoding of the principle is expressed in the following sets of variables.
Variables For all i, j, k, and gate v as above:

• xj1 . . . xjs are the variables representing the input of generator Gj .

• yi1 . . . yis are the variables representing the input of activator Ai.

• zvik represents the value of gate v in circuit Cik.

We now give the encoding. For any index i ∈ [q] we group in a set Fi the polynomials relevant
to a row i. Indexes i, j, k, v and α, β apply properly as described above. The polynomials in a set
Fi are shown below:

xj(α) · yi(β) · z̄ji,k when the ith bit of Gj(α) is 1 and Ai(β) = k (4.1)

yi(β) when β 6∈ dom(Ai) (4.2)

yi(β) · zAi,k · zBi,k · z̄vi,k gate v ← A ∧B and Ai(β) = k (4.3)

yi(β) · zAi,k · z̄vi,k
yi(β) · zBi,k · z̄vi,k

}
gate Y ← A ∨B, and Ai(β) = k (4.4)

yi(β)z|C|i,k when Ai(β) = k (4.5)

Consider a common root for these polynomials: (4.1) says that if the i-th bit of the column
generated by Gj is 1 and the active circuits for i-th row is k, then the j-th input of Cik must be on.
(4.2) forces the yi variables to encode a value in the domain of the activator Ai. This is necessary
because activators are partial functions. (4.3) and (4.4) force the active circuit to compute the
gates correctly. The equation (4.5) claims that the output of the active circuit is zero.

The principle F (C,w, r) consists in the conjunction of Fi for i ∈ [q] plus the canonical boolean
axioms of Pcr.

Notice that this principle is slightly different from the one in [8], where additional variables are
used to encode circuits activation. We choose not to use them because they would cause troubles
in some technical steps of the following proofs.

Definition 4.8. We call F (C,w, r) the principle described above as
⋃
i Fi, where C is a monotone

circuit, q = 2Θ(w) is a prime, and r is the surjectivity parameter of generators and activators.

Fact 4.9. The polynomials of principle F (C,w, r) can be produced in |C|2O(w+r) time and space.
If w(C) ≤ w then F (C,w, r) is unsatisfiable.

Proof. Remember s = O(w+r). For any α, β two strings of s bits, any i ∈ [q] and any j ∈ [n] either
there is exactly one k such that polynomial xj(α)yi(β)z̄ji,k ∈ Fi, or there is a polynomial yi(β) ∈ Fi.
In total we have n2O(s) + |C|2O(s)) polynomials. Notice that all of them are monomials. Even if the
encoding does not use negated variables, the expanded polynomials would be exponentially long in
the degree of the equation. Biggest degree appearing is 2s thus the size of the formula F (C,w, r) is
again n2O(s) + |C|2O(s). The obvious output strategy satisfies the resource bound. Unsatisfiability
comes as a restatement of Fact 4.7.

32 CHAPTER 4. NON AUTOMATIZABILITY OF POLYNOMIAL CALCULUS

4.3 Degree Lower bounds for F (C, w, r)

In this section we prove the formula F (C,w, r) requires a high degree to be refuted. We need a
tailored degree measure for this purpose.

Definition 4.10. For a monomial t consider the three sets

Xt := {(j, l) : xjl ∈ t}
Yt := {(i, l) : yil ∈ t}
Zt := {(i, k) : there is a v for which zvik ∈ t}

We define the index-degree of t as

ideg(t) = |Xt|+ |Yt|+ |Zt|

The index-degree of a polynomial is the biggest index-degree among its monomials.

Lemma 4.11. Let C be a monotone circuit, and w an integer parameter. Any Pcr refutation of
F (C,w, r) requires degree at least r ·min{w(C)− 1, w}.

From now on we fix m := min{w(C) − 1, w}. The index-degree lower bound relies on the
construction of an operator K over multivariate polynomials such that

1. K is a linear operator.

2. K(p) = 0 for any p in F (C,w, r).

3. If ideg(t) < rm then K(xt) = K(xK(t)) holds for any variable x.

4. K(1) 6= 0

Proof. (of Lemma 4.11) Assume a proof of index-degree less than rm exists: each line of such proof
is either an equation in F (C,w, r), or a sum of previous lines, or the product of a previous line with
a variable where index-degree stays below rm. Then property (1), (2), (3) imply that K maps to
0 every line in the proof. This contradicts property (4) which claim K can not map last line to
0.

We now exhibit such operator K. Assume I ⊆ [q] and consider the set of polynomials S the
union of

⋃
i∈I Fi and of all Pcr axioms. In the rest of the chapter we abuse the notation regarding

I ∈ [q] in this way:

RI(p) := RS(p)
I ` p iff S ` p
I �ρ is the set {p�ρ such that p ∈ S}

A ⊆ I for any polynomial set A if A ⊆ S
I ⊆ B for any polynomial set B if S ⊆ B

where R is the usual residue in the polynomial ring (see Definition 2.1) with respect to a set
of polynomials, and ` is the usual Pc deduction from a set of polynomials. The meaning of this
notation abuse is to identify a set I ∈ [q] with its induced polynomial set.

Definition 4.12. Function I and operator K:
Fix a monomial t: we can write t = t1t2 · · · tqt′ where each ti contains only variables indexed by

i ∈ [q] and t′ contains only generator variables of type xjl. We define

4.3. DEGREE LOWER BOUNDS FOR F (C,W,R) 33

I(t) as the set of i ∈ [q] such that ideg(ti) ≥ r.

K(t) to be equal to RI(t)(t).

On a polynomials p =
∑

i citi, K(p) is defined to be equal to
∑

i ciK(ti).

We now check that K satisfies properties (1)-(4). (1) It comes from the definition. (2) If a
premise p is an axiom of the system then any of its term is reduced with respect to an ideal which
contains p itself. Any premise p in Fi is a monomial t which contains more than r variables indexed
by i. Thus such p is in the ideal induced by I(t). This implies K(p) = 0. (4) is true because I(1)
induces a set of polynomials with a common solution.

To prove (3) we need the two following properties of ideals:

Lemma 4.13. For any polynomial p and ideal J generated by q1, q2, . . . , qm, all variables appearing
in RJ(p) also occur in p, q1, q2, . . . , qm.

Proof. Let x be a variable occurring in RJ(p) and neither in p nor in any qi. By definition p −
RJ(p) =

∑
i hiqi for some polynomials hi thus by setting x to 0 we obtain p−RJ(p) �x=0=

∑
i hi �x=0

qi where RJ(p) �x=0 is strictly smaller than RJ(p). This contradicts that RJ(p) is the minimum
according to <P.

Corollary 4.14. Let m1,m2 two monomials, if t is a monomial in m1 · RI(m2)(m2) then I(t) ⊆
I(m1m2).

Proof. If i′ ∈ I(t)/I(m1m2) then variables indexed by i′ in t are more than r. No such variable is
contained in Fi for i′ 6= i. Thus by Lemma 4.13 any term in RI(m2)(m2) does not contain more of
such variables than m2 itself contains. Such i′-indexed variables are then contained in the union of
the variable of m1 and m2. Thus i′ ∈ I(m1m2) but this contradicts the assumption.

Next lemma is the heart of the argument: it shows how a small index-degree derivation has
local behavior. The set of premises needed in the derivation is a subset of the one given by the
operator I.

Lemma 4.15. Let t be a monomial of index-degree less than rm and I(t) ⊆ I ⊆ [q] with |I| ≤ m.
Then RI(t)(t) = RI(t).

Proof. We will show an assignment ρ such that t�ρ= t and I �ρ⊆ I(t). This is sufficient because if

I �ρ` t�ρ −RI(t)�ρ

then by properties of ρ we get I(t) ` t−RI(t)�ρ. This means RI(t)�ρ is bigger than RI(t)(t) in the
order among polynomials. It is also smaller than RI(t) because a partial assignment can’t increase
the order. Notice that we also have RI(t) smaller then RI(t)(t) because I(t) is a subset of I and
residue is monotone decreasing with respect to the subscript set. Thus RI(t) = RI(t)(t).

To construct such ρ we now consider J the set in indexes j ∈ [n] such that t contains less r
variables among xj1, . . . , xjs. Thus |[n]− J | ≤ m.

Notice that because of r-surjectivity of generators we have that for any j ∈ J and any vector
v = v1 . . . vq in the image of Gj there is a boolean partial assignment αj on “xj” variables such
that no variable in t is assigned and Gj(α) = v. We choose a v such that for any i in I we have
vi = 0. Such choice is possible because |I| ≤ m and v is a column in a Paley matrix of appropriate
size. We add partial assignments αj for j ∈ J to ρ. Such partial assignments do not restrict t, and
set to 0 all polynomials xj(α)yi(β)z̄jik for any j ∈ J , i ∈ I, k ∈ [q]. Other polynomials have not
been touched so far.

34 CHAPTER 4. NON AUTOMATIZABILITY OF POLYNOMIAL CALCULUS

We now consider a row i0 in I/I(t) and t0 the monomial containing all variables in t indexed by
i0. We extend ρ to restrict to 0 all remaining polynomials in Fi0 without restricting t. There is at
least one circuit copy Ci0k such that no variables in t correspond to a gate of such circuit, otherwise
it would be ideg(t0) ≥ r and i0 would be in I(t). For the same reason we also know in t there are less
than r variables among yi01 . . . yi0s. Both observations together imply there is a partial assignment
to the yi0 variables not contained in t such that yi0(β) = 0 for all β with Ai0(β) 6= k. Then by now
all polynomials in Fi0 are satisfied with the exception of the ones corresponding to circuit Ci0k. We
set zji0k to 0 when j ∈ J and 1 otherwise. Then we propagate values among the circuit accordingly.
We remark that being |J | < m ≤ w(C) we have 0 at the output gate. This satisfy all clauses in
Fi0k without touching t. We continue to extend ρ in this way for all for all i ∈ I/I(t). The resulting
assignment satisfies the requested properties. Thus the lemma is proved.

Lemma 4.16. If the index-degree of a monomial t is less than rm then K(xt) = K(xK(t))

Proof. Consider a monomial t of index-degree less than rm. We will prove that both K(xt) and
K(xK(t)) are equal to RI(xt)(xK(t)). Consider the following chain of equations.

K(xt) = RI(xt)(xt) (4.6)

= RI(xt)(xRI(xt)(t)) (4.7)

= RI(xt)(xRI(t)(t)) (4.8)

= RI(xt)(xK(t)) (4.9)

The equation (4.6) is the definition; (4.7) because RI operator is an homomorphism on the ring
of multivariate polynomials; (4.8) holds because |I(xt)| ≤ |I(t)|+ 1 ≤ m and Lemma 4.15 applies;
(4.9) holds because of the definition of K. Let us denote xK(t) as

∑
i αiti in the next chain of

equations.

K(xK(t)) = K(
∑
i

αiti) (4.10)

=
∑
i

αiK(ti) (4.11)

=
∑
i

αiRI(ti)(ti) (4.12)

=
∑
i

αiRI(xt)(ti) (4.13)

= RI(xt)(
∑
i

αiti) (4.14)

= RI(xt)(xK(t)) (4.15)

The first lines holds because the notation just introduced; (4.11) by linearity of K; (4.12) by
definition of K; (4.13) holds because any ti is a monomial in xRI(t)(t). We now use Corollary 4.14
to claim I(ti) is a subset of I(xt), which has size less than m. Lemma 4.13 finally implies the
equation. By using linearity we get (4.14) and by reverting the change of notation we conclude the
proof with equation (4.15).

4.4. NON AUTOMATIZABILITY OF HN, PC AND PCR 35

4.4 Non automatizability of HN, Pc and Pcr

In this section we prove a result similar to Lemma 3.1 of [8], for proof systems HN, Pc and
Pcr. Results obtained in Section 3 of [8] depend on Resolution system, while the self-improvement
technique developed in Section 4 of [8] refers to MMCSA amplification and is independent from
the proof system adopted.

Lemma 4.17. Let C be a monotone circuit, and w an integer parameter. Assume that r = Θ(w):

1. Any Pcr refutation of F (C,w, r) has size at least

2Ω(rmin{w(C),w})

2. If w(C) ≤ w then there is a HN proof of F (C,w, r) of size

|C| · 2O(r·w(C))

Proof. (1) Lower bound. The strategy here follows [8]: we deduce a degree lower bound on the
Pcr refutation of F (C,w, r) and then we use a random restriction/probabilistic method argument
to deduce the size lower bound.

The restriction: for each generator and activator we restrict uniformly independently at random
a set of r/2 of the s variables in each input set. For each i ∈ [q] we also choose independently r/2
circuit copies of the r available and we restrict randomly all the gates of such copies. The restricted
polynomial set is essentially (up to index reordering) subsumed by F (C,w, r/2).

Fix d := r
4 ·min{w(C)−1, w}. We show that any monomial with index-degree bigger that d is set

to zero with probability at least 1−2−Ω(d). Fix a polynomial t of index degree at least d. We factor
t = t1 · · · tdt′ where ti is either a generator variable, an activator variable or a non empty product
of gate variables corresponding to a particular circuit Cik. We want to estimate the probability
that ti is set to 0 by the random restriction, assuming t1 . . . ti−1 haven’t been. Consider the case
ti is a generator or an activator variable: s is the number of such variables for each generator
and activator. With at least r/2s probability ti is chosen among the restricted variables. Then
with probability at least r/4s the monomial is set to zero. We have r = Θ(w) by assumption and
s = Θ(r+w) by construction, then r/4s is a constant. In the case ti is a product of variables of Cik
for some i and k then such circuit is chosen to be restricted with probability at least 1/2 because
no previous one has been, and the product is restricted to zero with at least probability 1/4. The
probability of the monomial not to be set to zero is then at most cd for some constant c < 1.

For a partial assignment ρ distributed as described Π�ρ is a refutation of F (C,w, r)�ρ. Assuming
there exists Π of size smaller than cd then by union bound there is a restriction ρ such that Π �ρ
is a refutation of degree less than d for F (C,w, r) �ρ. By a simple reordering and weakening we
obtain a refutation for F (C,w, r/2). This is in contradiction with the index-degree lower bound
proved in Section 4.3.
(2) Upper bound. In this hypothesis the principle is unsatisfiable because of Fact 4.9. In this
case a tree-like refutation of size |C|2O(s·w(C)) for F (C,w, r) exists as it is shown in [8]. Such proof
can be simulated in Pcand Pcreasily. For Pcthe absence of dual variables leads to manipulate
big representations of polynomials, but the asymptotic complexity of the proof stays the same. For
completeness we also show a proof in HN.

We now assume wlog the first 1 . . . w(C) inputs correspond to the minimum satisfying assign-
ment.

We have to prove there are multiples of premises which sum up to 1. Notice that by definition of
characteristic functions we have 1 =

∑
α∈{0,1}s Xj(α) for any j ∈ [n] and also 1 =

∑
β∈{0,1}s Yi(β)

36 CHAPTER 4. NON AUTOMATIZABILITY OF POLYNOMIAL CALCULUS

for any i ∈ [q]. Then we get

1 =
∑

α1...αw(C)β

X1(α1) · · ·Xw(C)(αw(C))Yi(β)

for any i, in particular we fix i := i(α1, . . . , αw(C)) to be a row containing a satisfying assignment
generated by α1 . . . αw(C). This immediately implies there is a value k for which Cik outputs 1.
Fix p0 := X1(α1) · · ·Xw(C)(αw(C))Yi(β) be one of the polynomials in the sum, and let be k the
corresponding activated circuit.

We now show p0 can be written as sum of premises: consider the propagation of the satisfying
assignment through Cik (from now on we drop the ik indexes for sake of notation). There is a
minimal sequence of gates z1 . . . zm in the circuit such that zm is the output gate, z1 . . . zw(C) are
the input gates activated by generators, for any AND gate both its inputs are predecessors in the
sequence, for any OR gate at least one of its input is also a predecessor in the sequence. We denote
pl := p0z

1 · · · zl. We prove by backward induction on l that pl is provable in Hilbert Nullstellensatz.
Base case: pm is a multiple of Yi(β)zmik which is a premise.
Induction step: assuming pl is provable. By minimality the gate zl is activated by some pre-

decessor(s) in the sequence. Then pl−1 = pl−1(1− zl − z̄l) + pl−1z̄
l + pl−1z

l. The first part comes
from boolean axioms, the second part is a multiple of Yi(β)zAikz

l
ik (Yi(β)zAikz

B
ikz

l
ik) if the gate is an

OR (respectively an AND), the third part comes from inductive hypothesis.
Then p0 can be proved in |C|O(1) . The number of such polynomials to prove are 2s·w(C)+s.
To prove that the sum of characteristic functions gives 1 it is sufficient an extensive use of

boolean axioms of dual variable. This leads to a proof of size |C|O(1) · 2s·w(C)+s + 2O(s·w(C)+s).
Because r = Θ(w) we get s = Θ(r + w) = Θ(w) and the final claim.

Lemma 3.1 of [8] can be now be rephrased for HN and Pcr, as follows

Lemma 4.18. There exists a polynomial time computable function τ which maps any pair 〈C, 1m〉,
where C is a monotone circuit and m is an integer into an unsatisfiable CNF τ(C,m) such that:

• there is a HN proof of τ(C,m) of size |C|mO(min{w(C),logm})

• Any Pcr refutations of τ(C,m) has size at least mΩ(min{w(C),logm})

Proof. Set w = logm/4 and r = Θ(w) according to Lemma 4.17. Define

τ(C,m) := F (C,w, r) ∧ τm

where τm is the pigeon hole principle PHP l+1
l where l = log2m, plus pi,j + p̄i,j − 1 for (i, j) ∈

[l + 1]× [l]. The pij variables of pigeon hole principle are disjoint from F (C,w, r) ones.
The size lower bound mΩ(min{w(C),logm}) holds for both τm (by [47, 37]) and F (C,w, r) (by

Lemma 4.17). Then holds for τ(C,m) because Feasible Interpolation and the Weak Feasible Dis-
junction properties hold for Polynomial Calculus (see [45, 46]). More concretely from a short proof
of τ(C,m) we could extract a short proof of τm or F (C,w, r).

The upper bound holds because if w(C) < logm
4 then we can use the upper bound in Lemma

4.17, otherwise we can refute τm in size 2log2m because PHPn+1
n has 2O(n) treelike Resolution proof

and HN polynomially simulates treelike Resolution.

We conclude the chapter by sketching the proof of Theorem 4.1 and 4.2.

4.4. NON AUTOMATIZABILITY OF HN, PC AND PCR 37

Proof. (Theorem 4.1 and 4.2)
Theorem 4.1 and 4.2 are essentially a rephrasing of Theorem 2.5 and Theorem 2.7 in [8], where

proof systems HN, Pc and Pcr substitute Resolution. In their proof the only part depending on
the proof system is Lemma 3.1 of [8]. Such lemma for HN, Pc, Pcr is exactly our Lemma 4.17.
Then the proof of both Theorem follows in the same way as in [8].

Chapter 5

Pcrk proof system

In this chapter we extend the Pcr system. We define the system Pcrk by combining Pc and Resk.
In the whole chapter we assume k = O(1) (our results hold for any k less than

√
logn

log logn , but we
fix it to a constant to simplify the proofs). Monomials in Pcr succinctly represent clauses by using
dual variables to express negation. Notice that the product of n factors like (1−xi) is a polynomial
with 2n terms: a clause with many negations requires a large polynomial representation. In Pcr
the problem is solved by using x̄i as a placeholder for (1 − xi). In this way any clause has a Pcr
representation of linear size. Placeholders in a monomial can be efficiently expanded by using the
axiom 1− xi − x̄i.

We are going to define a similar extension of Pc in which k-DNF can be efficiently represented.
Instead of adding placeholders, we allow lines in the proof to be more complex algebraic expressions.
This proof system is called Pcrk.

In this chapter we show that the degree complexity required to prove a theorem in Pcrk is
essentially the same required in Pc, i.e. Pc simulates Pcrk in the same degree. Degree is not
affected by the use of stronger formulas, but size could.

We analyze the power of Pcrk: we prove that Pcrk efficiently simulates Resk, and is expo-
nentially stronger than Resk on certain principles. To do this we define a variant of the matching
principle which has short proof in Pcrk and requires exponential size in Resk. It turns out that
such variant of matching principle is efficiently provable even in Pcr. Even if Pcrk is stronger
than Resk it can not prove the regular (weak) pigeonhole principle in polynomial size. This follows
immediately from the probabilistic argument used in [50] for Resk. Their proof applies also to
Pcrk, and we give a sketch that.

Lower bounds on size of Pcrk and Resk refutations are obtained by the use of a Switching
Lemma due to Segerlind et al. [50]. Here we will use that, along with an adapted version for our
algebraic proof systems. Such new version is proved in this chapter. In some cases we will rely
directly on the results in [50], when the necessary modifications to their proof are trivial and of
little interest.

The general lower bound strategy used in this chapter leverages on the relation between two
complexity measures: the size measure and another auxiliary measure µ (width for Resk and degree
for Pcrk). Consider a formula F and a refutation Π. The strategy consists in the following steps:

1. Define a distribution on partial assignments D.

2. Show that for any line l ∈ Π and a random assignment ρ ∈ D, µ(l �ρ) is small with very high
probability.

3. Show that no refutation Π′ exists for F �ρ such that µ(Π′) is small.

39

40 CHAPTER 5. PCRK PROOF SYSTEM

If a small Π exists, then by a counting argument there exists a ρ such that l �ρ is small for every
l ∈ Π. It means µ(Π�ρ) is small. This is in contradiction with (3) and proves a lower bound on the
size of Π.

The main point of this strategy is that the auxiliary measure is almost unrelated with the actual
proof system (we will clarify this notion later) so the third step can be achieved in a simpler proof
system than the one under study.

5.1 Pcrk definition

We introduce the notion of k-monomial : an algebraic representation of a k-DNF. As usual we
interpret 0 as true and 1 as false and we translate logical disjunctions as algebraic products. Thus
any k-DNF on variables x1, x2, . . . xn can be written as the product of algebraic expressions over
x1, x2, . . . xn, x̄1, x̄2, . . . x̄n, each of them encoding a logical conjunction of size up to k.

We encode a generic conjunction l1 ∧ l2 ∧ · · · ∧ lk as the polynomial 1 − l̄1 l̄2 · · · l̄k. Here li is
a generic element in V = {x1, . . . , xn, x̄1, . . . , x̄n}. Thus a product of such expressions encodes a
k-DNF in a natural way. The empty product is intended to be 1, i.e. the false k-DNF. An example
of a 3-monomial is: x3x̄2(1− x̄5x2)x4(1− x1x̄2x3).

Thus k-monomials algebraically represent k-DNFs by the following syntactical transformation

∏
i

li ·
∏
j

1−
kj∏
i=1

li

←→∨
i

li ∨
∨
j

 kj∧
i=0

l̄i

Notice that this transformation is a essentially a bijection modulo the fact that a conjunction

of one variable x in a k-DNF can be mapped equivalently either to x̄ or (1− x). In our framework
the translation does not change the function computed because in our algebraic setting we always
consider 0,1 assignments in which for any i the equation x̄i = 1− xi holds.

A line in a Pcrk proof is a k-polynomial, which is a linear combinations of k-monomials. Notice
that this is a generalization of the approach of Pcr. In Pcr dual variables are used as placeholders
to (1− x) expression, here we use (1−

∏
x) in a similar way, without using placeholders.

The axioms of Pcrk includes those of Pcr plus axioms

1− y1y2 · · · yj − (1− y1y2 · · · yj) for j ≤ k and y1 . . . yj ∈ V

which introduce syntactical parentheses and allow to work with k-polynomials.
Analogously, the rules of Pcrk are those of Pcr with one more rule to deduce k-polynomials

p

(1− y1 · · · yj)p
for j ≤ k and y1 . . . yj ∈ V

Notice that the extension of Pcr to Pcrk is simpler than the one from Res to Resk. We do
not need any rule with more than two premises. This allows a simulation of Pcrk by Pcrwhich is
more efficient in term of degree.

A Pcrk proof of a k-polynomial g from k-polynomials f1, . . . , fn (denoted by f1, . . . , fn `k g)
is a sequence of k-polynomials ended by g, each one obtained from either an axiom or by applying
a rule to previously derived k-polynomials. In particular f1, . . . , fn ` 1 is a Pcrk refutation of
f1, . . . , fn.

5.1.1 Complexity measures for Pcrk

The formulas for k-polynomials are a special case of algebraic circuit (see Section B.2.2). In
particular k-polynomials are 3-depth formulas and have a well defined degree complexity measure:

5.2. RELATIONS BETWEEN PCRK AND OTHER PROOF SYSTEMS 41

for any k-polynomial p there is a unique multilinear polynomial which computes the same function
and which characterizes the value of deg(p) (see [51, 23] or Fact 1.8).

5.2 Relations between Pcrk and other proof systems

We now study the relation between Pcrk and related proof systems, more precisely Pc, Pcr and
Resk. For any k-polynomial p we denote as p∗ its multilinear representation. Thus we have the
following facts about Pc, Pcr, Pcrk.

Fact 5.1. In Pcrk the following holds

1. For any k-polynomial p we have that ∅ ` p− p∗.

2. Pcrk is complete.

3. Any refutation Π of a CNF can be simulated by a refutation Γ in Pc or Pcr such that
deg(Γ) ≤ deg(Π) + k.

Proof. (1) It is sufficient to prove that the first statement holds for a k-monomials m. We proceed by
induction on the number of factors. We denote here a generic factor as (1−

∏
x). If m = (1−

∏
x)

then m − m∗ is an axiom of Pcrk. Consider now a k-monomial (1 −
∏
x)m. By induction

m −m∗ is derivable, then we get (1 −
∏
x)m − (1 −

∏
x)m∗ by multiplication rule. From axiom

(1−
∏
x)− 1 +

∏
x we get (1−

∏
x)m∗ −m∗ +

∏
xm∗ by applying multiplications and sums. By

another sum application we obtain (1 −
∏
x)m − m∗ +

∏
x m∗. We complete the derivation by

applying Pcr boolean axioms to eliminate negated variables and non-multilinear terms from the
expanded part. By soundness of Pcrk and uniqueness of the representation this is the boolean
polynomial corresponding to m. The proof can be easily extended to a k-polynomial by acting on
all its k-monomial one at time.

(2) f1, . . . , fn |= g implies f∗1 , . . . , f
∗
n |= g∗. By completeness of Pc we get f∗1 , . . . , f

∗
n ` g∗.

Finally by using (1) we get f1, . . . , fn ` g.
(3) Polynomials obtained as a CNF encoding in Pc are proper lines in Pcrk. Now consider

a refutation Π = {pi}i of the encoded CNF. We show how to derive p∗i in Pc. This is sufficient
because 1∗ = 1 thus the result will be a valid refutation. If pi is a premise then p∗i = pi. If pi is
an axiom, then either it is an axiom in Pcr or it is a parenthesis axiom. In both cases p∗i = 0.
If pi = pa + pb then p∗i = p∗a + p∗b . If pi = xpa (pi = x̄pa) then p∗i is the multilinearization of
xp∗a (p∗a − xp∗a). If pi = (1 −

∏
x)pa then the product of (1 −

∏
x)∗ and p∗a can be obtained and

multilinearized in Pcr. In all such derivations the degree is never higher than deg(p∗a) + k which
is less or equal than deg(pa) + k. Notice that any proof in Pc is also a proof in Pcr.

Corollary 5.2. Gop(G) can’t be proved by Pcrk in sublinear degree

The previous lemma tells us that Pcrk is sound and complete, and even if such proof system
can give us some advantage over Pcr in term of proof size, it has essentially the same power in
term of degree complexity. Thus the degree lower bound for Pc and Pcr proved in Chapter 3 also
holds for Pcrk. We now show that Pcrk is (not surprisingly) able to simulate Resk efficiently
in term of size: the number of k-monomials in the Pcrk translation of a Resk proof is not much
bigger than the number of k-DNF in such proof.

Fact 5.3. Let Π be a refutation of a CNF φ. Let pφ be the set of polynomials arising from the poly-
nomial translation of φ. Then there are Pcrk refutation Γ of pφ such that S(Γ) = O(2kS(Π)O(1)).

42 CHAPTER 5. PCRK PROOF SYSTEM

Proof. We refer to names and notation for Resk rules given in preliminaries (see Definition 1.1.3).
Weakening rule is simulated by multiplication rule. For the other three rules consider the case
in which A and B are empty DNFs: by completeness these rules can be easily simulated in size
O(2k) and degree k because they involve at most k original variables. Consider now non-empty
k-DNFs A,B and the corresponding k-monomials mA,mB. Observe that if p1, · · · pl ` q then
mAp1, · · ·mApl ` mAq in Pcrk in the same size. Also if p1, p2 ` q then

mAp1,mBp2 ` mAmBp1,mAmBp2 ` mAmBq

in the same size plus the number of factors of mA and mB. Now if φ is the empty k-DNF then pφ
is 1. Thus the simulation is complete.

5.3 Switching lemma for k-DNF and k-monomials

A standard technique in Computational Complexity is to study how a complexity measure behaves
when a computation is randomly restricted. We now study the degree complexity of a k-polynomial
under some kinds of restrictions. We also rephrase such study in the framework of Resk (results
in this case are not original and are given without a proof).

Segerlind et al. in [50] reduce lower bounds for Resk to width lower bounds for Resolution,
in a similar fashion we reduce lower bounds on the number of k-monomials in Pcrk proofs to
degree lower bounds for Pc or Pcr. The intuition is that if a random restriction drops the degree
complexity of a k-monomial with very high probability, then a small Pcrk refutation is restricted
to small degree with nonzero probability. We will design a random restriction for which the latter
event is not possible, which means the Pcrk refutation is far from being small. The key tool for
such line of reasoning is a “switching lemma” which states that the probability of not reducing the
degree is very small. We can easily adapt the Switching Lemma in [50]. It studies the restriction
of k-DNFs to shallow decision trees. We will prove an analogous Switching Lemma which studies
restrictions of k-monomials to multilinear polynomials of low degree.

5.3.1 Decision trees for boolean functions

To introduce the Switching Lemma we need another computational model which represents “compu-
tation by cases”. The computation is represented by a tree, paths of which correspond to mutually
exclusive partial assignments. Paths are augmented until the value of the function is completely
determined.

Definition 5.4. A decision tree computes a boolean function f : {0, 1}n 7→ R on n variables
{x1 . . . xn} if it is a tree with the following properties:

• leaf vertices are labelled by values in R.

• if the root is a leaf labelled by v, then f is a constant function of value c.

• internal vertices are labelled by variable names.

• if the root has children and is labelled by xi then it has exactly two children trees T0 and T1

where T0 is a decision tree for f �xi=0 and T1 is a decision tree for f �xi=1. None of them has
a vertex labelled by xi.

Despite its simplicity, decision tree is an important computational model with many applica-
tions. For our purposes we focus on decision trees for functions over boolean domain. Like for
any other computational model we are interested in complexity measures: several decision trees
compute the same function so we want a notion of efficiency to rank them.

5.3. SWITCHING LEMMA FOR K-DNF AND K-MONOMIALS 43

Definition 5.5. The height of a decision tree T is the length of the longest path from the root to
a leaf. We denote it as ht(T). For a function over boolean domain we denote ht(f) as the smallest
value of ht(T) for T computing f .

Our main interest is degree complexity measure: we now relate the height of a decision tree
representation with the degree of the polynomial representation.

Fact 5.6. If f : {0, 1} → R is computable by a decision tree of height h then

1. If R = {true, false} then f can be written as an h-DNF and as an h-CNF.

2. If R = F then deg(f) ≤ h.

Proof. Let be T a tree of height ht(T) that computes f . Consider any path P from the root to a
leaf. The path is identified uniquely by the labels on the internal vertices and the corresponding
choices made.

(1) We can easily write a conjunction on x1, . . . xn expressing that an assignment is compatible
with the choices on the path. Such conjunctions contain at most h literals. The disjunction of all
such expressions corresponding to paths which evaluate to true is a h-DNF and is equivalent to
f . By negating the leaf labels of T we obtain a decision tree for ¬f of height h, then there is an
h-DNF for ¬f . By De Morgan Rules we have an h-CNF computing f .

(2) Consider a path from the root to a leaf of T to be P = (xi1 = v1, . . . xip = vp). We denote
V0 and V1 the set of variables in the path assigned respectively to 0 and 1. We denote χP as∏
x∈V0

(1 − x) ·
∏
x∈V1

x and fP the value labelling the leaf on this path. χP has degree less than
or equal to h, and evaluates to 1 if and only if the assignment is compatible with the path P . The
polynomial

∑
P fpχP computes f .

Notice that the polynomial representation is unique, though there are many representation as
a decision tree of arbitrary height. This means that the transformation of a suboptimal decision
tree in a polynomial would cause high degree terms to cancel.

5.3.2 Random restriction

Definition 5.7. Let φ be a k-DNF on {x1, . . . , xn}. We call c(φ) the size of the smallest set of
variables containing at least one variable from every conjunction in φ. We call c(φ) the covering
number of φ. The covering number of a k-monomial is defined as the same of the corresponding
k-DNF.

Recall Corollary 3.4 in [50]. It says that a random restriction which is very strong on sparse
k-DNFs (i.e. with high cover number) is also reasonable strong on general k-DNFs. “Very
strong” means that the restricted k-DNF is a constant with good probability. “Reasonably strong”
means the restricted k-DNF has a shallow decision tree with good probability. We also know that
degree is lower than the decision tree height. Thus we can correctly rephrase the corollary in our
terminology.

Lemma 5.8. (Corollary 3.4 [50] with d = 1, γ = 1, s = h/2) Let k be a positive integers, fix a
δ ∈ (0, 1] and let D be a distribution on partial assignments so that for any k-DNF ψ

Pr
ρ∈D

[ψ �ρ 6= true] ≤ 2−δc(ψ)

then for every k-DNF φ,

Pr
ρ∈D

[ht(φ�ρ) > h] ≤ k2−h
δ
4

k

44 CHAPTER 5. PCRK PROOF SYSTEM

Corollary 5.9. Let k be a positive integers, fix a δ ∈ (0, 1] and let D be a distribution on partial
assignments so that for any k-monomial f

Pr
ρ∈D

[f �ρ 6= 0] ≤ 2−δc(f)

then for every k-monomial m,

Pr
ρ∈D

[deg(m�ρ) > h] ≤ k2−h
δ
4

k

Proof. Consider the k-DNF φ which computes the same function of m. φ�ρ and m�ρ are the same
function, thus we have deg(m�ρ) = deg(φ�ρ) ≤ ht(φ�ρ) because of Fact 5.6. The assumptions on D
are equivalent to the ones needed by Lemma 5.8, then we can apply it and complete the proof.

5.3.3 An application: lower bound in Pcrk for weak pigeonhole principle

Several applications of this switching lemma are presented in [50], where exponential lower bounds
are given for Resk. We want to remark that in the case such proof strategy applies to Pcrk.

Definition 5.10. (Pigeon hole principle on a bipartite Graph for Pcrk) Fix G = (U1, U2, E)
a bipartite graph. For any {u, v} ∈ E we define a variable xuv. The principle contains the following
polynomials:

• Any u ∈ U1 is in an hole ∏
v∈Γ(u)

xuv

• Two pigeons are in different holes: for any {u, v}, {u′, v} ∈ E with u 6= u′

x̄uv · x̄u′v

Theorem 5.11. For any c > 1 there is an ε such that the pigeonhole principle on graph Kcn,n has
no proofs in Pcrk of size less then 2n

ε
.

We just give a sketch of the proof. We suggest to check [50] for all details.

Proof. (Sketch)
(1) For any c > 1 it is considered a bipartite regular graph on cn vertices on a side and n on

the other, and O(log n) edges per vertex. The pigeonhole principle defined on this graph subsumes
the one on Kcn,n. A random restriction is defined by the following process: with probability 1/4
a hole is matched, and if it is matched then a match is uniformly selected among its neighbours.
All others pigeons are disconnected from the hole. Notice that there exists an initial graph which
is an expander after the restriction with high probability (see [50]).

(2) Given any set of k-DNFs S of size less than 2n
ε
. With positive probability such restriction

(a) restricts all formulas in S to decision tree height less than Ω(n); (b) the restricted principle is
an instance of pigeonhole principle on an expander graph.

(3) Consider the set of all k-monomials in a proof in Pcrk of the pigeon hole principle.
Assume S < 2n

ε
then a random restriction transforms all monomials in the proof to degree less

then Ω(n). Using Fact 5.1 we know there is a Pc proof for the restricted principle of degree less
than Ω(n) + k. This is in contradiction with the expansion properties of the restricted graph: we
know such principle can’t be proved in such low degree this kind of graphs (see [15, 7]).

5.4. A SEPARATION BETWEEN PCRK AND PCRK+1 45

5.3.4 A framework

In the following sections we need a distribution on partial assignment which satisfies the hypothesis
of Lemma 5.8 and Corollary 5.9.

Definition 5.12. For a variable set V we define a distribution of partial assignments with respect
to the variables V l = {vi : v ∈ V, i ∈ [l]}.

The distribution is defined according to this process: for any variable v ∈ V select uniformly
and independently i ∈ [l] and then for all j ∈ [l]− {i} uniformly and independently assign a {0, 1}
value to vj.

We denote this distribution as Dl(V), omitting V if it is clear from the context.

Lemma 5.13. Let k be given and let φ be a k-DNF on variables Vk+1. There exists a constant
δ > 0, depending only on k, such that

Pr
ρ∈Dk+1

[φ�ρ 6= true] < 2−δc(φ)

Let k be given and let m be a k-monomial on variables Vk+1 and their negations. There exists
a constant δ > 0, depending only on k, such that

Pr
ρ∈Dk+1

[m�ρ 6= 0] < 2−δc(m)

Proof. We prove the result for a k-DNFs φ. The proof is identical for k-monomials. We say a
collection of terms is “independent” when for any v ∈ V, at most one of its term contains variables
in {v1, . . . , vk+1}. The greatest independent collection of terms in φ has at least c(φ)

k(k+1) members
otherwise we could build a cover smaller than c(φ). The probability that an assignment sampled
according to Dk+1 set a term t to true is independent on how the assignment behaves on other
terms in the collection. Inside t at most k elements of a given {v1, . . . , vk+1} set can occur. Then
any of them is assigned with at least probability 1

2 . With probability at least 1
4 any variable of t is

assigned to the value needed to make t true. Then the restriction fails to satisfy the k-DNF with
probability at most (

1− 1
4k

) c(m)
k(k+1)

< 2−δc(m)

for a δ which depends only from k.

5.4 A separation between Pcrk and Pcrk+1

In analogy with Resk, we prove a strict hierarchy result for Pcrk. The main part of the Resk
hierarchy separation in [50] was proving that some contradictions arising from a graph ordering
principle are refutable in polynomial size but demand high width in Resolution. In this section we
define a variant of Gop(G), which is polynomially refutable by Pcrk+1 but it’s not polynomially
refutable by Pcrk. We follow closely the ideas developed for Resk in [50].

Let Even(a1, . . . , ak) be the function from {0, 1}k to {0, 1} which gives 0 if the number of input
variables at 0 are even. Such function is a 2k−1 size multilinear polynomial with degree k.

For each variable xab of Gop(G) we introduce k new variables x1
ab, . . . , x

k
ab. Gop⊕k(G) is

defined as a modification of Gop(G): substitute any xab with Even(x1
ab, . . . , x

k
ab). Such principle

is specified by kd degree polynomials with less than 2dk monomials each, where d is the degree of
of the graph G. The usual axioms apply to the new variables.

46 CHAPTER 5. PCRK PROOF SYSTEM

Theorem 5.14. For any graph G, Gop⊕k(G) has a polynomial size refutation in Pcrk

Proof. We give a polynomial Pcrk refutation of an auxiliary principle called PGop⊕k(G), and
then we polynomially reduce Gop⊕k(G) to PGop⊕k(G).

First notice that Even(x1
ab, . . . , x

k
ab) (respectively 1 − Even(x1

ab, . . . , x
k
ab)) can be written as∏

(1 − l1 · · · lk) where l1 · · · lk range among all tuples of variables x1
ab, . . . , x

k
ab with an even (re-

spectively odd) number of negated variables. We denote such k-monomial as Evenab (respectively
Oddab).

PGop⊕k(G) is defined from Gop(G) as follows: each xab is substituted with the k-monomial
Evena,b. PGop⊕k(G) has the property to translate any monomial in Gop(G) with a single k-
monomial in PGop⊕k(G). So a Pcr refutation of Gop(G) can be translated in a Pcrk refutation
of PGop⊕k(G) by the mapping

xab 7→ Evenab

x̄ab 7→ Oddab

and the pseudo axioms

Even2
ab − Evenab

Odd2
ab −Oddab

1−Odda,b − Evena,b

Each of these pseudo axioms is derivable in Pcrk in size O(2k). Since Evenab and Oddab are
semantically equivalent to their polynomial expansions, in Pcrk we can derive the polynomials of
PGop⊕k(G) from those of Gop⊕k(G) with a proof of size at most 2O(dk) each.

We now prove the lower bound for Pcrk. Let V denote the set of variables of Gop(G), then
Dk+1(V) is a distribution on partial assignments of the variables in Gop⊕k+1(G).

Notice that when we apply a restriction ρ ∈ Dk+1(V) to Gop⊕k+1(G), it reduces to a principle
equivalent to Gop(G). It could happen that some variables have inverted polarity. Anyway it is
clear that from a Pcr refutation of Gop⊕k+1(G)�ρ we can easily construct a Pcr refutation of
Gop(G) of the same degree. Hence applying Theorem 3.4 we have the following Corollary.

Corollary 5.15. Let G be an (r, c)-vertex expander. Then for any constant k ≥ 1 and for any
ρ ∈ Dk+1(V), there are no Pc refutations of Gop⊕k+1(G)�ρ of degree less than or equal to cr/4.

Theorem 5.16. Let G be (δn, c)-vertex expander on n vertices, for some δ > 1. Let k ≥ 1 be a
constant. There exists a constant ε such that any Pcrk refutation of Gop⊕k+1(G) contains at least
2εn k-monomials.

Proof. Fix r = δn. By Lemma 5.13 we can apply the Switching Lemma to Dk+1 with h = (rc/4−k).
We have that for any k-monomial m,

Pr
ρ∈Dk+1

[deg(m�ρ) > (rc/4− k)] ≤ k2−O(rc/4−k)

Hence there exists a constant ε such that

Pr
ρ∈Dk+1

[deg(m�ρ) > (rc/4− k)] ≤ 2−εn

Assume that there is Pcrk refutation of Gop⊕k+1(G) of size strictly less than 2εn, then by the
union bound there is a Pcrk refutation Π of Gop⊕k+1(G)�ρ with deg(Π) ≤ (rc/4 − k). Hence by
Lemma 5.1 there is a Pc refutation of Gop⊕k+1(G)�ρ of degree ≤ rc/4. This is in contradiction
with Corollary 5.15.

5.5. A SEPARATION BETWEEN PCRK AND RESK 47

Using a family of vertex expander (see [36] for constructions) together with Theorems 5.14 and
5.16 we get the following exponential separation.

Theorem 5.17. For k = O(1), there is a family of proposition over m variables separating expo-
nentially Pcrk from Pcrk+1: there are polynomial size refutations in Pcrk+1 and any refutation
in Pcrk requires size 2Ω(

√
m).

5.5 A separation between Pcrk and Resk

We have already shown that Pcrk simulates efficiently Resk. Here we argue that Pcrk is strictly
stronger than Resk by showing a proposition with no short Resk refutation.

We build on the known separation between Pcr and Res, given by the matching principle
on a bipartite graph. We consider two different formulations of such principle. In both of them
we fix the underlying graph to be a d-regular, bipartite, (Ω(n), O(1))-boundary expander graph
G = ([n], [n− 1], E) (see Definition B.7 in Appendix B).

Definition 5.18. (Matching principle) For any {u, v} ∈ E we define a variable xuv. The
matching principle contains the following clauses:

• Any u ∈ [n] is matched ∨
v∈Γ(u)

xuv

• Any v ∈ [n− 1] is matched ∨
u∈Γ(v)

xuv

• Two left vertices are matched to different right vertices: for any {u, v}, {u′, v} ∈ E with u 6= u′

x̄uv ∨ x̄u′v

• Two right vertices are matched to different left vertices: for any {u, v}, {u, v′} ∈ E with v 6= v′

x̄uv ∨ x̄uv′

We now extend this principle as we did in the previous section by substituting any variable
with the exclusive or of a sequence of k + 1 variables. We define the functions

Odd(v1, v2, . . . , vk+1) = v1 ⊕ v2 ⊕ . . .⊕ vk+1

Even(v1, v2, . . . , vk+1) = 1⊕ v1 ⊕ v2 ⊕ . . .⊕ vk+1

Definition 5.19. For any {u, v} ∈ E we define k+1 variables x1
uv, . . . , x

k+1
uv . A vertex u is matched

to a vertex v when Odd(x1
uv, . . . , x

k+1
uv) is true. The principle Matchk+1(G) is represented by the

following propositional formulas:

• For any u ∈ [n] there a matching v ∈ [n− 1]∨
v∈Γ(u)

Odd(x1
uv, . . . , x

k+1
uv)

48 CHAPTER 5. PCRK PROOF SYSTEM

• For any v ∈ [n− 1] there a matching u ∈ [n]∨
u∈Γ(v)

Odd(x1
uv, . . . , x

k+1
uv)

• Two left vertices are matched to different right vertices: for any {u, v}, {u′, v} ∈ E with u 6= u′

Even(x1
uv, . . . , x

k+1
uv)

∨
Even(x1

u′v, . . . , x
k+1
u′v)

• Two right vertices are matched to different left vertices: for any {u, v}, {u, v′} ∈ E with v 6= v′

Even(x1
uv, . . . , x

k+1
uv)

∨
Even(x1

uv′ , . . . , x
k+1
uv′)

The formulas we used to describe Matchk+1(G) are not clauses, but all of them contain a con-
stant number of variables and are representable with at most 2d(k+1) clauses each. So Matchk+1(G)
has linear size representation with respect to the number of vertices of G (remember that d and k
are constants).

In this section we again adopt the strategy

1. We show an efficient refutation of Matchk+1(G) principle in Pcrk

2. A partial assignment distributed according to Dk+1 transforms Matchk+1(G) in Match1(G),
which is equivalent to the matching principle.

3. Such restriction reduces a k-DNF to a set of clauses of small width with high probability.

4. If a refutation of Matchk+1(G) in Resk is small, then with positive probability the restricted
refutation has small width in spite of being a Res refutation of the matching principle, and
this is known to be impossible.

Theorem 5.20. Let k = O(1), there is a polynomial size and constant degree Pcrk refutation of
Matchk+1(G).

Proof. For any edge uv we denote as fuv the polynomial over x1
uv . . . x

k+1
uv which computes the

function Even(x1
uv, . . . , x

k+1
uv). Notice that fuv evaluates to 1 if and only if Odd(x1

uv, . . . , x
k+1
uv) is

true, because of the interpretation of 0 and 1 as true and false.
For any vertex u in the left side of the graph we deduce the polynomial La = 1−

∑
v∈Γ(u) fuv,

also for any v on the right side we deduce Rv = 1 −
∑

u∈Γ(v) fuv. Such polynomials are implied
by the principle. Notice that these deductions require at most 2O(d(k+1)) steps and degree at most
d(k+ 1) because Pcrk is complete and such polynomials contains at most d(k+ 1) variables each.
We then deduce ∑

u∈[n]

Lu −
∑

v∈[n−1]

Rv

Any polynomial fuv corresponding to an edge {u, v} appears once in the first sum and once in the
second one. Thus all such polynomials cancel out. Consider the constant terms: 1 is summed n
times while it is subtracted n − 1 times, thus the deduced polynomials is 1. This proof has size
n · 2O(d(k+1)) and degree at most d(k + 1).

Notice that the previous refutation can be achieved in Pc. Pc can simulate each step in constant
size and constant degree.

5.5. A SEPARATION BETWEEN PCRK AND RESK 49

Theorem 5.21. Let k = O(1), any Resk refutation of Matchk+1(G) requires exponential size.

Proof. We consider the distribution Dk+1 on partial assignments on variables in Matchk+1(G).
We know by Lemma 5.13 that we can apply Switching Lemma (Lemma 5.8) to any Resk refutation
of Matchk+1(G) with h = δn where δ is a constant we will fix later. We get that for any k-DNF
F in the proof,

Pr
ρ∈Dk+1

[
ht(F �ρ) >

δn

k

]
≤ k2−O(δn

k
)

Hence there exists a constant ε such that

Pr
ρ∈Dk+1

[
ht(F �ρ) >

δn

k

]
≤ 2−ε

δn
k

Assume that there is Resk refutation of Matchk+1(G) of size strictly less than 2ε
δn
k , then by

the union bound there is a Resk refutation Π of Matchk+1(G)�ρ with ht(Π) ≤ δn
k . We now use

the claim

Theorem 5.1 in [50] Let φ be a propositional formula represented by clauses of width
at most h. If it has a Resk refutation Π such that ht(Π) ≤ h then it also has a refutation
of width hk in Res.

This implies there is a resolution refutation of width less than δn for the restricted Matchk+1(G).
It is easy to translate this to a refutation for matching principle. We know δ can’t be too small,
because of the following result:

Theorem B.10, see Appendix B If G = (U1, U2, E) is a bipartite (Ω(n), O(1))-
boundary expander, then any Res refutation of the matching principle on G requires
width at least Ω(n).

Then there is a constant value of δ such that no resolution refutation of width δn exists
for matching principle on G. Then no Resk refutation of size 2ε

δn
k = 2−Ω(n) exists as well for

Matchk+1(G).

Chapter 6

Random CNF are hard for Pcrk

In this chapter we show that random 3-CNFs are hard to refute in Pcrk. Pcrk is the most powerful
system for which such result is known. Hardness results for 3-CNFs are known for Res [24, 12, 17],
Pc and Pcr[15], and Resk [2].

Here we follow the strategy of Alekhnovich [2]. In that paper a partial assignment distribution
is shown which acts similarly to the ones described in the Chapter 5: with high probability a k-DNF
is restricted to a low degree polynomial, thus there is a positive probability that all lines in a short
proof are restricted to low degree polynomials. In the chapter we will always consider the systems
Pc, Pcr and Pcrk defined over a field of characteristic different from 2.

6.1 Random 3-CNF, encodings and Pc lower bounds

Let φn,∆ be the random 3-CNF obtained selecting ∆n clauses uniformly from the set of all possible
3-clauses over n variables. Following [2], instead of proving a lower bound for φn,∆ refutations, we
will prove it for a polynomial encoding of a set of linear equations modules 2, which semantically
implies φn,∆. We will always consider linear systems modulo 2.

For each possible formula φn,∆ consider the matrix Aφn,∆ defined by

Aφn,∆ [i, j] =

{
1 if the i-th clause of φn,∆ contains the variable xj
0 otherwise

Let bφn,∆ be the boolean m vector defined by

bφn,∆ [i] = (# of positive variables in the i-the clauses) mod 2

We consider the system of linear equations Aφn,∆x = bφn,∆ .
Given a sistem of linear equations Ax = b, we define its polynomial encoding Poly(A, b) as

follows: for each equation ` ∈ Ax = b, let f` is the characteristic function of ` that is 0 if and only
if the equation is satisfied. Let ˜̀ be the unique multilinear polynomial representing the function
f`. Then Poly(A, b) =

⋃
`∈Ax=b

˜̀. Notice that deg(˜̀) = 3.

Lemma 6.1. Each Pcrk refutation of φn,∆ can be transformed into a Pcrk refutation of Poly(Aφn,∆ , bφn,∆)
with a polynomial increase in the size.

Proof. Any equation ` in Aφn,∆x = bφn,∆ semantically implies the clause C in φn,∆, from which `

arose. Then by completeness we have a Pcrk proof of the polynomial encoding of C from ˜̀.

51

52 CHAPTER 6. RANDOM CNF ARE HARD FOR PCRK

The following observation is crucial to find 3-CNF which are hard for Pc, Pcr, Pcrk refutation
systems. Such result is rephrased and used many times (see [17, 22, 15, 7, 2, 4]) and refers to the
boundary expansion of a matrix (see Definition B.8).

Fact 6.2. ([24],[7]) For all constant ∆ > 0 and for all c < 1, let φn,∆ be a random 3-CNF of
n variables and ∆n clauses. Then with probability 1 − o(1) φn,∆ is unsatisfiable and Aφn,∆ is a
(n

∆2/(1−c) , c)-boundary expander.

The reason we consider the boundary expansion of a random 3-CNF (of the corresponding linear
system) is the following theorem, saying expanders need high degree to be refuted by Pc and Pcr.

Theorem 6.3. (Theorem 3.10 in [4]) Given an unsatisfiable linear system Ax = b where A is
an (r, c)-boundary expander, any Pcr refutation of Poly(A, b) in a field F with characteristic 6= 2
require degree ≥ rc

4 .

Definitions and results in the next three subsections are essentially taken from [2], sometimes
applied to k-monomials instead of k-DNFs.

6.2 How to restrict Ax = b preserving expansion

In the following subsections we will apply restrictions to linear systems Ax = b where A is an
expander. In some cases such restrictions could destroy the expansion of the system. Following [2]
in this section we develop a tool which extracts a good expander from the restricted system.

Definition 6.4. Let A be an m × n matrix and let r, c > 0. For a set J ⊆ [n], the relation `eJ,r,c
on the set [m] is defined as follows:

I `eJ,r,c I1 iff |I1| ≤
r

2
∧

∣∣∣∣∣∂I1 −

(⋃
i∈I
{j : A[i, j] = 1} ∪ J

)∣∣∣∣∣ < c

2
|I1|

Since r, c will be always clear from the context, from now on we will omit them. Let I and J be
subsets of the rows and the columns of a matrix A. Consider the following algorithm Cle(A, I, J):

R := [m]
while (there exists I1 ⊆ R such that I `eJ I1)

I := I ∪ I1

R := R− I1

end
output I;

Define Cle(J) := Cle(A, ∅, J). Two lemmata are immediate from the definition and proved in
[2].

Lemma 6.5. (Lemma 2.4 in [2]) Let A be any boolean m×n matrix and let J ⊆ [n]. Let I ′ = Cle(J)
and let J ′ =

⋃
i∈I′ Ai. Let Â be the matrix obtained from A removing the rows in I ′ and the columns

in J ′ ∪ J . Either Â is empty or it is a (r/2, c/2)-boundary expander.

Proof. For any set of row I ∈ Â, we will denote ∂AI and ∂ÂI the boundary computed w.r.t. A

and Â respectively. Assume |I| ≤ r/2. By construction ∂AI ⊆ ∂ÂI ∪ J ∪ J
′. I has no element in

common with Cle(J), then |∂AI − (J ′ ∪ J)| ≥ c
2 |I|. It follows |∂ÂI| ≥

c
2 |I|.

It is important to remark that Cle does not increase too much the number of columns to remove
from A.

6.3. NORMAL FORMS 53

Lemma 6.6. ([2, 5]) If A is an (r, c)-boundary expander and |J | ≤ cr/4, then |Cle(J)| < 2
c |J |.

Proof. Assume |Cle(J)| ≥ 2
c |J | and consider I1 · · · Ii · · · Il, the inference of Cle(J). Wlog we can

assume the Iis to be pairwise dijoint. Consider the first step t such that C = ∪ti=1Ii and |C| ≥ 2
c |J |.

Since |C − It| < 2
c |J | ≤

r
2 and |It| ≤ r/2, then |C| ≤ r. Thus |∂C| ≥ c|C| by expansion of A. Then

|∂C−J | ≥ c|C|− |J | ≥ c
2 |C|. But at any step each Ii add strictly less than c

2 elements to |∂C−J |.
We have the contraddiction.

We combine previous lemmas in a useful tool for restricting linear systems while keeping both
unsatisfiability and expansion.

Lemma 6.7. Consider Ax = b be an m equations, n variables unsatisfiable linear system where
A is an (r, c)-boundary expander. Let J be a set of columns (i.e. variables of the system) with
|J | ≤ cr

4 . Define:

• I ′ = Cle(J) and J ′ =
⋃
i∈I′{j : A[i, j] = 1};

• AI′x = bI′ the linear system containing rows I ′ from Ax = b;

• Â is the matrix A with rows I ′ and columns J ∪ J ′ removed.

Then: (1) AI′x = bI′ is a satisfiable system on the variables corresponding to columns J ∪ J ′. For
any assignment ρ on such variables which satisfies AI′x = bI′, we have that: (2) (Ax = b) �ρ is
Âx = b̂ for some b̂, (3) Âx = b̂ is unsatisfiable and Â is and an (r/2, c/2)-boundary expander.

Proof. If AI′x = bI′ was unsatisfiable, then by gaussian elimination we could obtain a non empty
linear combination of rows resulting in 0 = 1, in the field F2 such linear combination is a subset H
of rows. No variables in ∂H can be eliminated, so ∂H is empty. Since |J | ≤ cr

4 , then by Lemma
6.6 |I ′| ≤ r

2 . Thus |H| ≤ r
2 . But then, by the expansion of A, ∂H can’t be empty. This is a

contradiction.
(Ax = b) �ρ is Âx = b̂ because assigned columns become constants and satisfied conditions are

set to 0 = 0.
The expansion of Â is guaranteed by Lemma 6.5.

6.3 Normal forms

Let us start by recalling that when speaking of k-monomials, a term is a either a variable or an
expression of the form (1 −

∏
xi). This definition resembles the definition of term for a k-DNF.

For a term t, V (t) := {i : xi appears in t}.
Let us consider another relation on the set of rows of the matrix A.

Definition 6.8. ([7]) Let A be an m× n matrix and let r > 0. For a set J ⊆ [n] (a set of indices
of variables) the relation `J,r on the set [m] is defined as follows:

I `J,r I1 iff |I1| ≤
r

2
∧ ∂I1 ⊆

(⋃
i∈I
{j : A[i, j] = 1} ∪ J

)

For J ⊆ [n], Cl(J) is the set of all rows that can be inferred from ∅ via the relation `rJ . For a
term t, Cl(t) := Cl(V (t)).

The next lemma is proved in [7, 2] and we omit its proof.

Lemma 6.9. ([7, 2]) If |J | ≤ cr
2 , then |Cl(J)| ≤ |J |c .

54 CHAPTER 6. RANDOM CNF ARE HARD FOR PCRK

Let t be a term over variables {x1, . . . , xn, x̄1, . . . , x̄n}. We identify t with the linear system
over {x1, . . . , xn} defined by xj = εj for all xj appearing in t. We fix εj = 1 for variables appearing
positive and εj = 0 for variables appearing negative. Such system is satisfied iff t = 0.

Definition 6.10. Let A a m× n matrix which is a (r, c)-boundary expander and let b be a boolean
vector of size m. Let t be a term and let I = Cl(t). t is locally consistent with respect to Ax = b
if the system t ∧AIx = bI is satisfiable.

Lemma 6.11. ([2]) Let Ax = b where A is an (r, c)-boundary expander, with r > 3
c . Term t is

locally consistent with Ax = b iff for any subset I of equations with |I| < r/2, the system t∧AIx = bI
is satisfiable.

Proof. Assume that t is locally consistent with A and that there exists a I s.t |I| < r/2 and
t ∧ AIx = bI inconsistent. Then by linear algebra there exist I ′ ⊆ I and a V ′ ⊆ V (t), such that∑

i∈I′(Aix − bi) +
∑

xj∈V ′(xj − εj) ≡ 1. Then it must be that ∂I ′ ⊆ V (t). Thus I ⊆ Cl(t) which
is a contradiction with locally consistency of t. The other direction follows since by Lemma 6.9
Cl(t) < r/2.

Corollary 6.12. Let Ax = b where A is a m × n boolean matrix which is an (r, c)-boundary
expander, with r > 3/c. Then for any set I ⊆ [m] such that |I| < r/2 the system AIx = bI is
satisfiable.

Proof. The statement follows immediately by proving that the constant 0 is locally consistent with
respect to Ax = b. This in turn follows since otherwise there would be a set I whose boundary is
empty. But this is in contradiction with expansion of A.

Definition 6.13. Let A be a boolean m×n matrix and let b be a boolean m vector. A k-monomial
is in normal form with respect to Ax = b if each of its term is locally consistent wrt Ax = b.

Definition 6.14. Let Ax = b be an unsatisfiable system where A a is boolean m × n matrix and
b be a boolean m vector. A Pcrk refutation Π of Poly(A, b) is in normal form with respect to
Ax = b if all the locally inconsistent terms wrt to Ax = b appearing in Π are only in monomials of
degree O(k).

We end the section by showing that, as long as k = O(log n), every Pcrk refutation of Poly(A, b)
can be transformed into a Pcrk refutation in normal form with only a polynomial increase in the
number of k-monomials.

Lemma 6.15. Let be a linear system Ax = b where A is an m×n matrix which is an (r, c)-boundary
expander. Let k = O(log n) and Γ be a Pcrk refutation of Poly(A, b). Then there is refutation Π
of Poly(A, b) in normal form and such that S(Π) = S(Γ)O(1).

Proof. We first get rid from Γ of the locally inconsistent terms of the form t = (1 −
∏

1≤i≤k xi).
We want to replace this term by the constant 1 along the proof. By definition there exists some
set I = Cl(t) of rows, with |I| ≤ k/c, such that t is inconsistent with the system AIx = bI . By
completeness of Pcr there must be a Pcr proof Γt of

∏
i xi from Poly(AI , bI). Such proof involves

at most O(k) variables so S(Γt) = 2O(k) and deg(Γt) = O(k).
Let Π′ be the proof where all occurrences of t will be deleted as follows: t could have been

introduced in some k-monomial either by the multiplication rule, in which case in the Π′ we simply
skip this rule, or it was introduced by some axiom of the form 1−

∏
i xi − (1−

∏
i xi). In this case

in the new proof we replace this axiom with the Pcr proof Γt of
∏
i xi. Notice that the Pcr proofs

Γt could introduce in Π′ locally inconsistent terms but only occurring in monomials of degree O(k).

6.4. RANDOM RESTRICTION 55

Now we obtain Π getting rid from Π′ of the locally inconsistent terms t = x with only one
variable. Using the Pcr proofs Γt of x̄, we can delete x in the polynomials of Poly(A, b), in the
axioms 1−x− x̄ and in the axioms x2−x. A Pcrk axiom containing x can be replaced by a similar
axiom without x. So x disappears from Π′. As above the Γt Pcr proofs are of size S(Γt) = 2O(k)

and degree deg(Γt) = O(k) and may introduce locally inconsistent terms in Π which only occur in
monomials of degree O(k). So Π is in normal form and, since k = O(log n), S(Π) is polynomial in
S(Γ).

6.4 Random restriction

In this section we define the distribution D over partial assignments over {x1 . . . , xn} that will
guarantee the applicability of the Switching Lemma (Lemma 5.9). The distribution is that defined
by Alekhnovich in [2].

Definition 6.16. Let A be a m × n boolean matrix which is a (r, c)-boundary expander. Let
b ∈ {0, 1}m. Let X be the set of variables {x1, . . . , xn}. Let DA,b be the distribution over partial
assignments ρ over X obtained by the following experiment: choose a random subset X1 of X of
size cr/4. Let Î = Cle(X1). Let X̂ = X1 ∪ Y1, where Y1 = {j : ∃i ∈ Î : A[i, j] = 1}. ρ is obtained
by selecting uniformly at random an assignment x̂ for the set of variables whose indices are in X̂
that satisfies the system AÎ x̂ = bÎ .

The proof of the next main lemma is the same as that of the analogous Theorem 3.1 in [2]
where instead of k-DNF we use k-monomials. We use the concept of covering number introduced
in Definition 5.7.

Lemma 6.17. ([2]) Let A be a m × n boolean matrix which is a (r, c)-boundary expander such
that A has at most ∆̂ ones in each column. Let b ∈ {0, 1}m and assume r = Ω(n/∆̂). For any
k-monomial f in normal form,

Pr
ρ∈DA,b

[f �ρ 6= 0] < (1− 2−k)c(f)/∆̂O(k)

Corollary 6.18. There exists a constant D such that, under the assumptions of the previous
lemma, for any k-monomial in normal form f we have:

Pr
ρ∈DA,b

[f �ρ 6= 0] < 2−c(f)/∆̂Dk

6.5 Main result

We are ready to give the main result of this section.

Theorem 6.19. For any constant ∆ let φn,∆ be a random 3-CNF on n variables and ∆n clauses.
For k = o(

√
log n/ log log n) any refutation of φn,∆ in Pcrk over a field with characteristic different

from 2, has size S > 2n
1−o(1)

with high probability.

Proof. Assume that φn,∆ is an unsatisfiable formula and Aφn,∆ is an (r, c)-boundary expander for
some constant c < 1 and any r = Ω(n). Consider the system Aφn,∆x = bφn,∆ as defined in Section
6.1. For easiness of notation let us omit the indices φn,∆ from both A and b. Remember k is
O(log n) and let Γ be a Pcrk refutation of φn,∆ of size S. Then by Lemma 6.1 there is a Pcrk
refutation Π of Poly(A, b) of size SO(1).

56 CHAPTER 6. RANDOM CNF ARE HARD FOR PCRK

To apply the Switching Lemma (Lemma 5.9), according to Corollary 6.18 we need to transform
the proof Π of Poly(A, b) in a proof of Poly(Â, b̂) where k-monomials are in normal form and Â
only contains a constant number ∆̂ of ones in each column.

Pick in A the set J of the cr/4 columns with the biggest number of ones, By Lemma 6.7 there
is a restriction α that, applied to Ax = b, restricts this system to Âx = b̂, where Â is a submatrix
of A with at least the columns J removed and is an (r/2, c/2)-expander. Notice moreover that in
each column of Â there are at most ∆̂ ≤ 12∆n

cr ones, which is a constant since r = Ω(n). If we now
apply Lemma 6.15 to Π �α we get a Pcrk normal form refutation Π̂ of Poly(Â, b̂) of size at most
SO(1).

Let now consider ρ sampled from DÂ,b̂ according to Definition 6.16 and denote by A′x = b′ and

Π′ respectively the system and the refutation obtained restricting Âx = b̂ and Π̂ by ρ.
By Corollary 6.18 and by setting the parameter of Lemma 5.9 as follows: δ = (1/∆̂)Dk and

h = (rc/64)− k − 1, we have that for any k-monomial in normal form m in Π̂

Pr
ρ

[deg(m�ρ) > (rc/64)− k − 1] ≤ 2
−rc

2O(k2)

With probability greater than 1− SO(1) · 2
−rc

2O(k2) we have that Π′ = Π̂�ρ has degree complexity
strictly less than (rc/64)− k by union bound1, and it is a refutation of Poly(A′, b′).

Fix any c < 1 and r = n
∆2/(1−c) . Notice that ρ ∈ DÂ,b̂ is defined in such a way that Lemma

6.7 applies. Thus A′ is an (r/4, c/4)-boundary expander. If S < 2
rc

2O(k2) then using Lemma 6.1 on
Π′ we get a Pcr refutation of Poly(A′, b′) of degree less than rc

64 . This is impossible because of

Theorem 6.3, and then it follows S ≥ 2
rc

2O(k2) .
Since by Fact 6.2 with high probability A is an (r, c)-boundary expander, then the theorem

follows.

Acknowledgment: We would like to thank Nathan Segerlind for interesting and helpful
discussions about the paper of M. Alekhnovich [2] and to suggest a new strategy in part of the
proof of Lemma 2.4 of [2] that led us to the proof of Lemma 6.15.

1Notice that locally inconsistent terms which were not eliminated from Π̂ occur in monomials of degree at most
O(k) because of Lemma 6.15

Chapter 7

Open problems

Our work leaves many interesting unsolved problems.

Simplify/Derandomize non-automatizability: It has already been argued that the proof
of non automatizability for Resolution [8] suffers of a complex probabilistic construction. Our
proof in Chapter 4 uses the same scheme, and suffers of the same problems. It would be nice to
find a simpler proof, even better a deterministic construction. Being this result conditioned to a
computational complexity assumption, this could be achieved under a stronger (but still believable)
assumption.

A non-automatizability proof is essentially the construction of a formula from an search problem
P . Small solutions of the problem map to short proofs for the formula, thus any algorithm giving a
short proof also gives hints about the target. Recent connections between computational learning
theory and automatization could help in finding hard problems which are appropriate for the
reduction, based on the hardness of learning concepts.

Quasi-automatizability: It is conjectured that proof systems like Resolution, Pc, Pcr
are not quasi-automatizable. The proof used in Chapter 4 cannot be improved to get this result,
because it works for treelike Resolution which is quasi-automatizable. The existence of propositions
like Gop(G) is a small step toward the solution. We know that some proof search algorithms are
very slow because they scan a huge space of possible proof steps even if there is a short refutation.
The size of the space is much bigger than a quasi-polynomial of the size of the shortest refutation.
The problem is that Gop(G) is very easy to refute. We would need a similar principle for which
the short proof is hard to compute. This is similar to ask for a decision problem in (NP ∩ coNP)
which is not solvable in quasi polynomial time.

An important fact is that a negative result about quasi-automatizability requires a reduction to
a problem which is very hard to approximate. Min-Coloring and Max-Clique are good examples.
Unfortunately a statement like “there’s no clique of size k”, being NP-hard, cannot be encoded
efficiently as a CNF unless coNP=NP.

Weak algebraic proof systems: A proof system is said to be weak when the lines in a proof
are circuits for which known lower bound exists. Lines in Pcrk are very peculiar circuits. It would
be nice to define stronger proof systems based on more complex and natural kinds of algebraic
circuits, while being able to prove lower bounds. Natural examples are algebraic circuits which are
sum of products of linear forms, in which either the top of the bottom gates have bounded constant
fan-in.

Fine tuning the optimality of degree vs size trade-off: In Chapter 3 we claim that the
Graph Ordering Principle implies that degree vs size trade-off is optimal for Polynomial Calculus.

57

58 CHAPTER 7. OPEN PROBLEMS

It actually can be improved further by showing a tautology of size n with a proof of size nO(1) and
which requires degree

√
n log(n).

Bibliography

[1] Agrawal, M., Kayal, N., and Saxena, N. Primes is in p. Ann. of Math 2 (2002), 781–793.

[2] Alekhnovich, M. Lower bounds for k-dnf resolution on random 3-cnfs. In Proceedings of
the 37th Annual ACM Symposium on Theory of Computing (2005), pp. 251–256.

[3] Alekhnovich, M., Ben-Sasson, E., Razborov, A. A., and Wigderson, A. Space
complexity in propositional calculus. SIAM J. Comput. 31, 4 (2002), 1184–1211.

[4] Alekhnovich, M., Ben-Sasson, E., Razborov, A. A., and Wigderson, A. Pseudo-
random generators in propositional proof complexity. SIAM J. Comput. 34, 1 (2004), 67–88.

[5] Alekhnovich, M., Hirsch, E. A., and Itsykson, D. Exponential lower bounds for the
running time of dpll algorithms on satisfiable formulas. In 31st International Colloquium on
Automata, Languages and Programming (2004), pp. 84–96.

[6] Alekhnovich, M., Johannsen, J., Pitassi, T., and Urquhart, A. An exponential
separation between regular and general resolution. Theory of Computing 3, 1 (2007), 81–102.

[7] Alekhnovich, M., and Razborov, A. A. Lower bounds for polynomial calculus: Non-
binomial case. In 42nd Annual Symposium on Foundations of Computer Science (2001),
pp. 190–199.

[8] Alekhnovich, M., and Razborov, A. A. Resolution is not automatizable unless W[P] is
tractable. SIAM J. Comput. 38, 4 (2008), 1347–1363.

[9] Alon, N. Tools from higher algebra. In Handbook of combinatorics (vol. 2). MIT Press,
Cambridge, MA, USA, 1995, pp. 1749–1783.

[10] Arora, S., and Barak, B. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[11] Beame, P. Proof complexity. In Computational Complexity Theory (2004), vol. 10 of IAS/-
Park City mathematics series, American Mathematical Society, pp. 199–246.

[12] Beame, P., Karp, R. M., Pitassi, T., and Saks, M. E. On the complexity of unsatisfia-
bility proofs for random k-cnf formulas. In STOC (1998), pp. 561–571.

[13] Beame, P., and Pitassi, T. Simplified and improved resolution lower bounds. In 37th
Annual Symposium on Foundations of Computer Science (1996), IEEE, pp. 274–282.

[14] Ben-sasson, E. Expansion in proof complexity, phd thesis. Tech. rep., Hebrew University,
2001.

[15] Ben-Sasson, E., and Impagliazzo, R. Random cnf’s are hard for the polynomial calculus.
In 40th Annual Symposium on Foundations of Computer Science (1999), pp. 415–421.

59

60 BIBLIOGRAPHY

[16] Ben-Sasson, E., Impagliazzo, R., and Wigderson, A. Near optimal separation of tree-
like and general resolution. Combinatorica 24, 4 (2004), 585–603.

[17] Ben-Sasson, E., and Wigderson, A. Short proofs are narrow - resolution made simple.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing (1999),
pp. 517–526.

[18] Bonet, M. L., and Galesi, N. A study of proof search algorithms for resolution and
polynomial calculus. In 40th Annual Symposium on Foundations of Computer Science (1999),
pp. 422–432.

[19] Bonet, M. L., and Galesi, N. Optimality of size-width tradeoffs for resolution. Computa-
tional Complexity 10, 4 (2001), 261–276.

[20] Bonet, M. L., and Galesi, N. Degree complexity for a modified pigeonhole principle. Arch.
Math. Log. 42, 5 (2003), 403–414.

[21] Bonet, M. L., Pitassi, T., and Raz, R. On interpolation and automatization for frege
systems. SIAM J. Comput. 29, 6 (2000), 1939–1967.

[22] Buss, S. R., Grigoriev, D., Impagliazzo, R., and Pitassi, T. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci. 62, 2
(2001), 267–289.

[23] Buss, S. R., Impagliazzo, R., Kraj́ıcek, J., Pudlák, P., Razborov, A. A., and
Sgall, J. Proof complexity in algebraic systems and bounded depth frege systems with
modular counting. Computational Complexity 6, 3 (1997), 256–298.

[24] Chvátal, V., and Szemerédi, E. Many hard examples for resolution. J. ACM 35, 4 (1988),
759–768.

[25] Clegg, M., Edmonds, J., and Impagliazzo, R. Using the groebner basis algorithm to
find proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing (1996), pp. 174–183.

[26] Cook, S. A. The complexity of theorem proving procedures. In STOC (1971), pp. 151–158.

[27] Cook, S. A., Robert, and Reckhow, A. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic 44 (1979), 36–50.

[28] Cox, D., Little, J., and O’Shea, D. Ideals, Varieties, and Algorithms : An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3rd edition. Springer, 2007.

[29] Downey, R., and Fellows, M. Parameterized Complexity. Springer-Verlag, 1999.

[30] Edmonds, J. Path, trees, and flowers. Canad. J. Math 17 (1965), 449–467.

[31] Galesi, N., and Lauria, M. Degree lower bounds for a graph ordering principle. Submitted.
See http://www.dsi.uniroma1.it/~galesi/publications.html.

[32] Galesi, N., and Lauria, M. On automatizability of algebraic proof systems. Submitted.
See http://www.dsi.uniroma1.it/~galesi/publications.html.

[33] Galesi, N., and Lauria, M. Extending polynomial calculus to k-dnf resolution. Electronic
Colloquium on Computational Complexity (ECCC), 041 (2007).

BIBLIOGRAPHY 61

[34] Haken, A. The intractability of resolution. Theor. Comput. Sci. 39 (1985), 297–308.

[35] Hartmanis, J., and Stearns, R. E. On the computational complexity of algorithms.
Transactions of the American Mathematical Society 117 (1965), 285–306.

[36] Hoory, S., Linial, N., and Wigderson, A. Expander graphs and their applications. Bull.
Amer. Math. Soc. 43, 4 (2006), 439–561.

[37] Impagliazzo, R., Pudlák, P., and Sgall, J. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity 8, 2 (1999), 127–144.

[38] Iwama, K. Complexity of finding short resolution proofs. In MFCS (1997), I. Pŕıvara and
P. Ruzicka, Eds., vol. 1295 of Lecture Notes in Computer Science, Springer, pp. 309–318.

[39] Jukna, S. Extremal Combinatorics: with Applications in Computer Science. Springer, 2001.

[40] Kraj́ıcek, J. On the weak pigeonhole principle. Fundamenta Mathematicae 170, 1-3 (2001),
123–140.

[41] Kraj́ıcek, J., and Pudlák, P. Propositional proof systems, the consistency of first order
theories and the complexity of computations. J. Symb. Log. 54, 3 (1989), 1063–1079.

[42] Lang, S. Algebra, 3rd ed. Springer-Verlag, 2005.

[43] Levin, L. Universal sequential search problems. PINFTRANS: Problems of Information
Transmission (translated from Problem Peredachi Informatsii (russian) 9 (1973).

[44] Papadimitriou, C. H. Computational Complexity. Addison-Wesley, 1994.

[45] Pudlák, P. On reducibility and symmetry of disjoint np-pairs. Theoretical Computer Science
295 (2003), 626–638.

[46] Pudlák, P., and Sgall, J. Algebraic models of computation and interpolation for algebraic
proof systems. DIMACS series in Theoretical Computer Science 39 (1998), 279–296.

[47] Razborov, A. A. Lower bounds for the polynomial calculus. Computational Complexity 7,
4 (1998), 291–324.

[48] Razborov, A. A. Proof complexity of pigeonhole principles. In In Developments in language
theory (Vienna (2002), Springer-Verlag, pp. 100–116.

[49] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, 2nd ed. Prentice
Hall, 2002.

[50] Segerlind, N., Buss, S. R., and Impagliazzo, R. A switching lemma for small restrictions
and lower bounds for k-dnf resolution. SIAM J. Comput. 33, 5 (2004), 1171–1200.

[51] Smolensky, R. Algebraic methods in the theory of lower bounds for boolean circuit com-
plexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
(1987), pp. 77–82.

[52] Stalmark, G. Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33
(1996), 277–280.

[53] Tseitin, G. S. On the complexity of derivations in the propositional calculus, 1968.

[54] van Lint, J. H. Introduction to Coding Theory (Graduate Texts in Mathematics), 3rd ed.
Springer-Verlag, 1998.

Appendix A

Notions from Commutative Algebra

In the thesis we study several algebraic proof systems. For both their definitions and analysis we
require knowledge of some concepts from commutative algebra. We give here the definitions we are
going to use in the rest of the thesis. They are given just for reference, for a deeper understanding
we suggest to read a book on the topic, like [28, 42].

A.1 Rings

The basic algebraic structure we use is the ring.

Definition A.1. A Ring is a set R equipped with two operations +, · for which the following
properties hold

Zero 0 ∈ R such that a+ 0 = 0 + a = a for every a ∈ R

+Comm a+ b = b+ a for every a, b ∈ R

+Inv For every a ∈ R there is a unique (−a) ∈ R such that a+ (−a) = 0

+Assoc (a+ b) + c = a+ (b+ c) for every a, b, c ∈ R

·Assoc (a · b) · c = a · (b · c) for every a, b, c ∈ R

·DistR (a+ b) · c = a · c+ b · c for every a, b, c ∈ R

·DistL c · (a+ b) = c · a+ c · b for every a, b, c ∈ R

Examples of rings are: integers, polynomials over one or more variables, formal power series,
functions with values defined on a ring, square matrices with real values. In each case listed we
refer to the customary sum and product operations. With the exception of square matrices, in the
previous examples the product operation is also commutative.

Definition A.2. A ring is called commutative if also the following property holds

·Comm 0 ∈ R such that a · b = b · a for every a, b ∈ R

Definition A.3. A ring is called Ring with unity if also the following property holds

One 1 ∈ R such that a · 1 = 1 · a = a for every a ∈ R

63

64 APPENDIX A. NOTIONS FROM COMMUTATIVE ALGEBRA

Example of a ring without unity is the set of all even integers. In this thesis we mostly consider
commutative rings with unity, with the exception of ideals which in general are rings without unity
(we introduce ideals in the next section).

Definition A.4. A Subring of a ring R is a set R′ ⊆ R such that if a, b ∈ R′ then −a ∈ R′,
a+ b ∈ R′ and a · b ∈ R′.

For any given integer m, the set of integers which are multiples of m is a subring of the integers.

Definition A.5. A Field is a set F equipped with two operations +, · for which the following
properties hold

Ring F equipped with +, · is a commutative ring with unity element.

·Inv For every a ∈ F/{0} there is b ∈ F such that a · b = 1.

Notice that the multiplicative inverse is always unique, so we can denote it either as 1
a or a−1.

Polynomial rings: we consider a field F and variables x1, . . . , xn. The ring of polynomials
denoted as F[x1, . . . , xn] can be defined as follow: it is a commutative ring, all finite products of
formal variables is in the ring are in the ring, any linear combination of those is in the ring. Nothing
else is. Notice that this is the smallest commutative ring containing F ∪ {x1 . . . xn} in which no
equation holds other than the ones which are necessary.

In general any polynomial can be written as∑
i

αimi

where αi ∈ F and mis are distinct products of formal variables. Notice that the empty product is
1.

A.2 Ideals, Ring Homomorphisms, Quotient rings

Definition A.6. Consider a subset I of a ring R. I is said to be an ideal if

• 0 ∈ I

• a, b ∈ I implies a+ b ∈ I

• a ∈ I and r ∈ R imply r · a ∈ I

The simplest example of ideal is the set containing only 0. Another common example is the set
of ring elements which are multiple of a fixed element r. Notice that: any ideal is also a subring;
the only ideal containing the element 1 is the ring itself; the only ideals of a field are {0} and the
field itself.

Definition A.7. Consider a subset G ⊆ R. The set

I =

∑
g∈G

hg · g|hg ∈ R

is the ideal generated by G.

It is known that any ideal of the polynomial ring is finitely generated, and that any integer
ideal of monovariate polynomials ideal can be generated by a single element. Ideals are strongly
related with the notion of homomorphism in a ring.

A.2. IDEALS, RING HOMOMORPHISMS, QUOTIENT RINGS 65

Definition A.8. Given two rings R,R′, any function f : R→ R′ is a ring homomorphism if

• f(0) = 0

• f(a+ b) = f(a) + f(b)

• f(ab) = f(a)f(b)

The map f is said to be a ring isomorphism if it is an invertible one to one map and both f and
f−1 are ring homomorphisms.

An example of ring homomorphism over the integer is the remainder of division by fixed value.

Definition A.9. Let R be a commutative ring and I an ideal of R. We denote the equivalence
relation ≡I as follows: for a, b ∈ R we have a ≡I b when a−b ∈ I. We denote a+I = b ∈ R : b ≡I a
the equivalence class containing a. The quotient ring R/I is the ring of the equivalence classes
with respect to the following operations:

• (a+ I)(b+ I) = ab+ I

• (a+ I) + (b+ I) = a+ b+ I

It is a standard exercise to prove that the definition is independent from the choice of equivalence
classes representation. The next theorem explains the relation between quotient rings and ring
homomorphisms. It is called the first isomorphism theorem for rings.

Theorem A.10. (1) Let R be a ring and f a ring homomorphism from R to R′. Let I be the
kernel of f and =f the image of f .

• I is an ideal of R

• =f is a subring of R′

• =f and R/I are isomorphic

(2) Let R be a ring and I an ideal of R. The map a 7→ a + I is a ring homomorphism with
kernel I and image R/I.

The next theorem tells that quotient ring constructions behave well when composed. This is
customary called third isomorphism theorem for rings. Beware the second and third isomorphism
theorems are ofter inverted in literature.

Theorem A.11. Let R be a ring and I, J two ideals in R such that I ⊆ J , then

• I is an ideal of J

• J/I is and ideal of R/I

• (R/I)/(J/I) is isomorphic to R/J

Definition A.12. Let R be a ring and I be and ideal, then the residue of a ∈ R modulo I is a
canonical element of a+ I. We denote it as RI(a).

The previous definition depends from the choice of the canonical element. Such choice is arbi-
trary and usually depends from the context.

66 APPENDIX A. NOTIONS FROM COMMUTATIVE ALGEBRA

A.3 Quotient ring representations of boolean function

In the thesis we ofter manage polynomials, polynomial ideals and quotient ring. We always assume
the formal variables to be evaluated on a boolean domain. It is often convenient to represent this
framework as quotient in polynomial rings.
P: The algebraic structure of boolean functions evaluating in F is the ring of multivariate

polynomials over x1 . . . xn modulo the ideal generated by x2
i − xi for i from 1 to n. We name this

ring P.

Fact A.13. The following holds for P

• Given r ∈ P, any representation of r computes the same boolean function.

• Elements of P have unique representation as multilinear polynomials in F[x1, . . . , xn].

Proof. By definition of quotient ring any two representations of an element r ∈ P differ by a sum
of multiples of x2

i − xi. Thus the difference evaluates to zero for any boolean assignment. This
means that the boolean function computed is completely specified by r. Denote as I the ideal
generated by {x2

i − xi}i∈[n]. Consider a monomial xem where m does not contain any occurrence
of x and e ≥ 2. Then (x2 − x)xe−2m is in the ideal I, so xem ≡I xe−1m. By repeating until
e = 1 we get xm. Doing the same for all variables we get a multilinear monomial. Thus for any
polynomial which represents an element in the ring, we can find a multilinear one representing the
same element. Uniqueness holds because ring elements define uniquely boolean functions, and two
different multilinear representations define two different functions by Fact 1.8.

N : As in the previous case such expressions have a polynomial quotient ring characterization:
F[x1, . . . , xn, x̄1, . . . , x̄n] modulo the ideal generated by the polynomial sets {x2

i − xi}i∈[n] and {1−
xi − x̄i}i∈[n]. We denote this ring as N .

Fact A.14. The following holds for N

• Given r ∈ N , any representation of r computes the same function.

• Elements of N have unique representation as multilinear polynomials in F[x1, . . . , xn].

Proof. The proof is identical to the one of P. Any boolean assignment puts to zero all generators
of the quotient ideal. Then any two polynomial representations of the same ring element evaluate
identically. This gives the first part.

For the second part: notice that negated variables can be eliminated from a polynomial repre-
sentation of the ring element r by using the x̄i = 1 − xi equations. Then we can apply Fact A.13
to obtain a multilinear polynomial representing r.

Uniqueness holds because of Fact 1.8.

The discussion about P and N clarifies what kind of objects are the proof lines in Polynomial
Calculus and Polynomial Calculus with Resolution (See Section 1.1.2 in Chapter 1).

Appendix B

Notions from Computational
Complexity

In this thesis we describe several concepts from computational complexity which are useful for the
development of the thesis results. We give basic definitions and properties.

B.1 Complexity classes

Definition B.1. A decision problem or a language on an alphabet Σ is a subset of Σ∗ (i.e. the
set of all strings on the alphabet Σ).

A Turing machine M accepts an input x if the machine M with input x halts in an accepting
state. We say M(x) is true if M accepts x. We say M(x) is false if M halts in a rejecting state.
We say M(x) is undefined when M does not halt on input x.

Definition B.2. We say M decides a language L ⊆ Σ∗ when its behaviour on Σ∗ follows the
conditions:

x ∈ L then M(x) = true

x 6∈ L then M(x) = false

In computational complexity theory it is customary to group languages according to the minimal
resources needed by an accepting computation. Such computation is modelled as either a Turing
Machine, a combinatorial circuit or some variants of them (e.g. alternating turning machines,
decision trees, branching programs,. . .). For a treatise about this fascinating theory we suggest
[44, 10].

Definition B.3. A set of languages grouped in this way is called a complexity class.

We now show some basic and important complexity classes. In the following we denote the
length of a word x as |x|.

P: a language L is said to be in the class P if there exists a machine M which halts on any input
x after at most p(|x|) steps, where p is a polynomial. We say M runs in polynomial time.

NP: a language L is said to be in the class NP if there exists a machine M , a polynomial p such
that for all x ∈ L, there exists a y such that M(x, y) = true; for all x 6∈ L and any y we require
M(x, y) = false. We require M to halt in at most p(|x|) steps in both cases.

coNP: a language L is said to be in the class coNP if Σ∗ − L is in NP.

67

68 APPENDIX B. NOTIONS FROM COMPUTATIONAL COMPLEXITY

The common understanding about P is that it collects the decision problems with efficient
sequential algorithms, like deciding if a graph has a perfect matching [30] or if a number is a prime
[1]. NPexpresses languages for which there is an easy verifiable witness for language membership.
For example deciding if a CNF is satisfiable may seem hard, but a satisfying assignment can be
easily checked. In a dual fashion it is easy to check that proposition is not a tautology when given
a counterexample. Then the set of proposition tautologies is the complement of a language in NP.
Then it is a language in coNP.

It is not known if whether P=NPor not. This is the major question in computational com-
plexity. Another important question has been discussed in this thesis: is NP= coNP? This is
the founding question for modern proof complexity, because it translates in “do all propositional
tautologies have a short proofs?”.

Algorithm designers soon discovered that randomization helps computation. Eventually ran-
domized computation complexity classes were defined: RP and coRP are worth a mention. In
this case we consider randomized Turing machines, in which the transition function at each step is
a random variable.
RP: a language L is said to be in the class RP if there exists a randomized machine M which runs
in polynomial time and such that for all x ∈ L, M accept x with probability at least 1/2. If x 6∈ L
then M never accept x.

RP is similar to NP, but x membership requires a huge number of witnesses: half of the
whole witness space. This implies that a random generated witness proves x ∈ L with non trivial
probability. In this interpretation of randomized computation the witness encodes the sequence of
transitions made by the machine.

coRP: a language L is said to be in the class coRP if Σ∗ − L is in RP.

B.1.1 Reduction and NP-completeness

One of the first tools devised in theory of computation was the concept of reduction. Assume any
instance of a problem A can be transformed in an instance a problem B and the solution of the
latter can be transformed back in a solution of the former. An algorithm for B implies an algorithm
for A. Then the impossibility of solving A implies that B cannot be solved either. This concept
is used, sometimes implicitly, in almost every impossibility result. It was proved by Cook [26] an
Levin [43] that any instance of a decision problem L in NP can be transformed in a CNF such
that the instance is in the language L if and only if the CNF is satisfiable. This transformation
can be done in polynomial time, then P= NP if and only if CNF satisfiability can be solved in
polynomial time. A problem with this property is called NP-complete.

B.2 Combinatorial circuits

We define the computational model of circuits. Particular instances of such model will be used. In
particular we are interested in those algebraic circuits called “polynomials” and in those boolean
circuits called DNF and CNF.

Given a set of n variables in a domain D, a combinatorial circuit on such variables is a direct
acyclic graph, in which any vertex is equipped with an ordering on its incoming edges. A vertex
in the circuit is called gate. The incoming edges of a gate are called inputs of the gate and the
outgoing edges are called outputs of the gate.

Gates with no outputs are called output gates, and gates with no inputs are called input gates.
An input gate is labelled with a function defined of Dn with values in D′ (not necessarily equal

to D). Most of the time those functions turns out to be projections on one of the parameters. Any
other gate is labelled by a function from D′k to D′ where k is equal to the number of its inputs.

B.2. COMBINATORIAL CIRCUITS 69

Evaluation of a circuit Given values to the variables we assign values to the gates by induction
on the topological order to the vertices in the graph.

Fix v1 . . . vn to be values in Dn, then an input gates labelled the function f evaluates to
f(v1, . . . , vn).

Consider any other gate that: it is labelled by a function f ; it has incoming edges from l gates,
each evaluating to values d1, . . . , dl; then we say the gate evaluates to f(d1, . . . , dl) and we call l
the arity of the gate.

A circuit with a single output gate is said to evaluate to the value of its output gate. Thus a
combinatorial circuit computes the function which maps elements of Dn to values in D′ assigned by
the evaluation. In the following we will identify a circuit with the function it computes unless it is
necessary to refer the particular computation device. The context will clarify the actual meaning.

B.2.1 Complexity measures on circuit

Given a function F on a given domain, we are interested in knowing what is the best circuit com-
puting that function. Such notion of best may depends on several conflicting complexity measures
(i.e. the circuit with smallest size, or with smallest depth). Even worse our definition doesn’t
prevent cheating, like defining the output gate to computes the needed function. Any reasonable
computational model requires some constraint on the computing power of gates. In this framework
questions about circuit complexity make sense. Circuit complexity is the understanding of how
small the following measures can be for a circuit which computes a given function.

Size The size of a circuit is the number of gates in the circuit.
Formula size If all but the input and output gates have out degree equal to one then the

combinatorial circuit is called formula. It is interesting to study the size of the smallest formula.
Depth We say input gates are at level 0 in the circuit. Any other gate’s level is one plus the

maximum among the levels of the incoming neighbors. The depth of a circuit is the maximum level
among the outputs gates. An alternative definition is that the depth is the length of the longest
directed path in the circuit.

B.2.2 Algebraic circuits

Consider a combinatorial circuit in which the domain D is a field F, input gates computes only
projection functions, and functions corresponding to gates are: products and linear combinations
of elements in F. Such circuit is called an algebraic circuit. Notice that we don’t allow division but
this is not an issue here, and it saves us to consider ill-defined functions.

A polynomial is a circuit (actually a formula) which computes a linear combination of products
of variables. It is straightforward to design a depth 2 algebraic circuit for it.

In general the input of an algebraic circuit is the underlying field, but in our cases we are mostly
interested in D = 0, 1.

B.2.3 Boolean circuits

Boolean circuits are defined on n variables with values in the domain {true, false} of boolean logic.
Input gates computes either x or ¬x for some variable x, and the other gates compute either logical
conjunction (AND) or logical disjunction (OR). Boolean circuits are usually allowed to have NOT
function as internal gates. In this case we avoid it, nevertheless that is irrelevant for computational
complexity investigations.

Among boolean circuits some are worth a remark. Clauses (resp. Terms) are depth 1 circuit
constituting respectively a disjunction (resp. conjunction) of input gates. A CNF is a conjunction
of clauses. A DNF is a disjunction of terms. We call k-CNF a CNF in which all clauses have at

70 APPENDIX B. NOTIONS FROM COMPUTATIONAL COMPLEXITY

most arity k, similarly we call a k-DNF a DNF in which all terms have at most arity k. Notice
that clauses, terms, CNFs and DNFs are formulas.

B.3 Parameterized Computational Complexity

Several optimization problems (i.e. finding the best combinatorial object according to a cost mea-
sure) are computationally difficult. There is no algorithm known to solve them efficiently, and
several results in computational complexity suggest no such algorithm exists at all.

Several approaches has been developed to overcome this problem: one is that of approximation
algorithms, in which the solution asked for is acceptable if its cost is close to the optimum. Another
approach is the one of considering problems where the size of the solution is small compared to the
input.

Consider the problem of vertex cover: to find the smallest set of vertices in a graph such that
all other vertices are at distance one from them. The corresponding decision problem is deciding if
there is a vertex cover of size at most k. This problem can be easily solved by listing all sets of k
vertices to find one which is a cover. If there are n vertices, there are O(nk) cases to check. There
exists indeed an algorithm which runs in O(n2 + 1.274k) [29]. Assuming that k is small compared
to n, then the running time is not too tragic.

Parameterized Complexity is a theory designed to model problems in which the size of the
solution is small, and a running time which is exponential in small parameter is acceptable.
FPT: A parameterized decision problem on alphabet Σ is L ⊆ Σ∗ × N. Such language L is fixed
parameter tractable if there is an algorithm which decide if (x, k) ∈ L with a running time of
f(k) · |x|O(1). Notice that f can be any function. By definition f is recursive.
FPR: It is similar to RP. A parameterized decision problem L is in FPRif there exists a random-
ized Turing machine which runs in time f(k) · |x|O(1) on any input (x, k), accepts with constant
probability when the input is in L and rejects with probability 1 otherwise.
coFPR: It is the complement of FPR.

An important problem from Parameterized Complexity Theory is Minimum Monotone Cir-
cuit Satisfying Assignment. It is an optimization problem: given a monotone circuit it asks for
the smallest hamming weight of an assignment which makes the circuit to output 1. An instance
for the parameterized version of the problem is (C, k) where C is a combinatorial circuit made of
gates ∨,∧ and k is a natural number. Language MMCSA is the set containing all pairs (C, k)
where C has a satisfying assignment of Hamming weight less than or equal to k. Now consider a
parameterized problem L. We say that L is fixed parameter reducible to MMCSA if there is an
algorithm A such that for any (x, k) gives A(x, k) = (Cx, k′) where:

• (Cx, k′) is in MMCSA if and only if (x, k) ∈ L.

• A runs in f(k) · |x|O(1) for some f .

• |Cx| ≤ |x|O(1).

• k′ ≤ g(k) for some arbitrarily g.

W[P]: it is the complexity class of all problems which are fixed parameter reducible to MMCSA.
Notice that if MMCSA is fixed parameter tractable then all members of W[P] are. Then MMCSA
is said to be W[P]-complete with respect to fixed parameter reduction. The major theoretical
question in Parameterized Complexity is to find out if FPT=W[P]. This is the parameterized
complexity equivalent of the P versus NP problem.

B.4. EXPANDERS 71

B.4 Expanders

We use different kinds of expanders in the thesis. Definitions in literature may have some nontrivial
differences from the following ones. Such differences would only be technical.

More details about the use of expansion in proof complexity can be found in [24, 14]. For a
general tutorial about expander graphs we suggest the survey [36].

Definition B.4. Let G = (V,E) be a graph and X,Y two disjoint subsets of V . We denote the
following sets as

• E(X,Y) = {{x, y} ∈ E : x ∈ X, y ∈ Y } the edge cut between X and Y .

• Γ(X) = {y ∈ V : y ∈ V/X and {x, y} ∈ E} is the neighborhood of X.

• ∂X = {y ∈ V : y ∈ V/X such that |E(X, {y})| = 1} is the boundary of X.

Definition B.5. Given a graph G = (V,E), we say G is an (r, c)-edge-expander if for all S ⊆ V
with |S| ≤ r we get |E(S, S̄)| ≥ (1+c)|S|. We say G is an edge-expander if it is an (Ω(n),Ω(1))-edge
expander.

Definition B.6. Given a graph G = (V,E), we say G is an (r, c)-vertex-expander if for all
S ⊆ V with |S| ≤ r we get |ΓS| ≥ c|S|. We say G is a vertex-expander if it is an (Ω(n),Ω(1))-
vertex expander.

Definition B.7. Given a bipartite graph G = (V,E), we say G is an (r, c)-boundary expander
if for all S ⊆ V with |S| ≤ r we get |∂S| ≥ c|S|. We say G is a boundary expander if it is an
(Ω(n),Ω(1))-boundary expander.

We also use the notion of expansion of a matrix which is essentially a generalization of the
boundary expansion of a graph.

Definition B.8. ([4, 7, 2]) Let A be a m×n matrix. For a set of rows I we define the boundary
of I (denoted as ∂I) as the set of all j ∈ [n] (the boundary elements) such that there exists exactly
one index i ∈ I for which Mij is non zero. Then, A is a (r, c)-boundary expander if the following
condition holds: for all I ⊆ [m], if |I| ≤ r, then |∂I| ≥ c · |I|. We say A is a boundary expander if
it is an (Ω(n),Ω(1))-boundary expander.

Definition B.9. Let φ be a CNF with m clauses and n variables, and Mφ be an m × n matrix
defined as follows

Mij =

{
1 the j-th variable occurs in the i-th clause of φ
0 otherwise

If Mφ in an (r, c)-boundary expander then so it is φ.

Expansion plays a fundamental role in proof complexity lower bounds. We give an example
here, which has been useful in Chapter 5. The following proof uses a technique which is standard
since Ben-Sasson and Wigderson seminal work [17] on expansion in proof complexity.

Theorem B.10. If G = (U1, U2, E) is a bipartite (Ω(n), O(1))-boundary expander, then any Res
refutation of the matching principle on G requires width at least Ω(n).

72 APPENDIX B. NOTIONS FROM COMPUTATIONAL COMPLEXITY

Proof. Assume that G is an (r, c)-boundary expander and fix V := U1 ∪U2. We refer to Definition
5.18 in Chapter 5 for the matching principle. For any v ∈ V we denote Pv :=

∨
u∈Γ(v) xuv, and we

denote B the set containing all other clauses. For any clause C in a resolution refutation of the
principle we define µ(C) as the size of the minimum set S ⊆ V such that

B ∪ {Pv}v∈S |= C

For P ∈ B, µ(P) = 0. For v ∈ V , µ(Pv) = 1. For any clause C deduced by C1, C2, µ(C) ≤
µ(C1) + µ(C2). Furthermore µ(∅) > r because the boundary expansion guarantees that any r
vertices are matchable. We show that there is a clause C∗ in the refutation with r

2 ≤ µ(C∗) ≤ r:
search among the proof clauses, starting from the empty clause and going up to a premise if its
value of µ is bigger then r. The process stops to a clause with measure greater that r whose both
premises have measure less than r. At least one of them must have measure bigger than r

2 by the
sublinearity of µ.

Now pick a minimal S ⊆ V such that B ∪ {Pu}u∈S |= C∗.
We claim that for any u ∈ ∂S there is xuv′ ∈ C∗ for some v′ ∈ V . This conclude the proof

because it means the width of C∗ ≥ |∂S|2 ≥
c|S|

2 = Ω(r) = Ω(n).
Assume u ∈ ∂S. There is a unique v ∈ S which is a neighbor of u. By minimality assumption

on S there is an assignment α which satisfies B (i.e. it is a partial matching) and {Px}x∈S−{v} (i.e.
it matches all vertices in S but v) but does not satisfies either Pv or C∗. If α doesn’t match u to
anything we extend it to match v. Otherwise α matches u to some v′ ∈ V/S, and we change it
to match u to v. We call the new assignment α′. In both cases α and α′ differ only by variables
indexed by v. Notice that α′ satisfies B ∪ {Px}x∈S and then C∗. This means C∗ has variables
indexed by v.

