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Abstract. Given a set S of points (stations) located in the d-dim. Eu-
clidean space and a root b ∈ S, the h-hops Convergecast problem
asks to find for a minimal energy-cost range assignment which allows to
perform the converge-cast primitive (i.e. node accumulation) towards b

in at most h hops. For this problem no polynomial time algorithm is
known even for h = 2.

The main goal of this work is the design of an efficient distributed heuris-
tic (i.e. protocol) and the analysis (both theoretical and experimental)
of its expected solution cost. In particular, we introduce an efficient pa-
rameterized randomized protocol for h-hops Convergecast and we
analyze it on random instances created by placing n points uniformly at
random in a d-cube of side length L. We prove that for h = 2, its ex-
pected approximation ratio is bounded by some constant factor. Finally,
for h = 3, . . . , 8, we provide a wide experimental study showing that our
protocol has very good performances when compared with previously
introduced (centralized) heuristics.

1 Introduction

An ad-hoc (wireless) network consists of a set of radio stations connected by
wireless links. In an ad hoc network, a transmission range is assigned to every
station. The overall range assignment determines a transmission (directed) graph
since one station s, with transmission r, can transmit to another station t if and
only if t belongs to the disk centered in s and of radius r. The transmission
range of a station depends, in turn, on the energy power supplied to the station.
In particular, the power Ps required by a station s to correctly transmit data to
another station t must satisfy the inequality

Ps

d(s, t)α
> γ (1)
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where d(s, t) is the Euclidean distance between s and t, α ≥ 1 is the distance-
power gradient, and γ ≥ 1 is the transmission quality parameter. The parameter
α may vary from 1 to more than 6 depending on the environment conditions; in
the ideal condition (empty space), α = 2 (see [21]). Stations of an ad-hoc net-
work cooperate in order to provide specific network connectivity properties by
dynamically adapting their transmission ranges. A range assignment r : S → R+

determines a directed transmission graph G(S, E) where edge (i, j) ∈ E if and
only if d(i, j) ≤ r(i). A fundamental problem underlying any phase of a dynamic
resource allocation algorithm in ad-hoc wireless networks is the following [10,
16, 7, 15, 19, 23]: find a range assignment such that (1) the corresponding trans-
mission graph G satisfies a given connectivity property Π , and (2) the overall
energy power required to deploy the assignment (according to Inequality (1))
is minimized. The overall energy power (i.e. the cost) of a range assignment
r : S → R+ is defined as

cost(r) =
∑

s∈S

r(s)α (2)

In this work, we address the range assignment problem in which G is required
to contain a tree directed towards a given root station b (called root), spanning
S and of depth at most h. The relevance of this particular connectivity property
is clear: feasible solutions for this problem, denoted as h-hops Convergecast,
allow minimal energy-cost converge-cast (i.e. node accumulation) operations to-
wards b in at most h-hops.
It is easy to verify that the h-hops Convergecast problem is a particular
case of the well-known Minimum h-hops Spanning Tree problem (h-hops MST)
defined as follows: given a graph G(V, E) with nonnegative edge weights and a
node b ∈ V , find a minimum-cost directed tree rooted at b, of depth at most h,
and spanning G. In fact, h-hops Convergecast corresponds to the restriction
of h-hops MST in which nodes are the stations and there is an edge for any
pair of stations i and j whose weight is d(i, j)α.

The main goal of this work is to design efficient distributed heuristics (i.e.
protocols) for h-hops Convergecast and then analyze (both theoretically
and experimentally) their expected solution costs. We intend to investigate the
problem, for any constant h, on random instances created by placing n points
uniformly at random in a d-cube of side length L. Such instances will be simply
called random instances.

Previous results. Almost all previous related works refer to the h-hops MST

problem. It is known that it is Max SNP-hard even when the edge weights of
the input graphs form a metric and h = 2 [1].

The 2-Dim 2-hops MST problem can be easily reduced to the classic Facility
Location Problem on the plane. Indeed, the distance of the root from vertex i
can be seen as the cost of opening a facility at vertex i. It thus follows that
all the (centralized) approximation algorithms for the latter problem apply to
the 2-Dim 2-hops MST as well. In particular, the best result is the PTAS
given by Arora et al in [3]. The algorithm works also in higher dimensions;



however, it is based on a complex dynamic programming technique that makes
any (distributed) implementation very far to be practical. Several polynomial-
time approximation algorithms for the Metric 2-hops MST problem have been
presented in the literature. The first constant factor approximation algorithm
was given by Shmoys et al in [26], they presented a 3.16 approximation algorithm.
After this, a series of constant factor approximation algorithms was published,
see [5, 18, 13]. Currently, the best factor is 1.52 due to Mahdian et al [20].
The general h-hops MST problem was studied in [12, 14, 17] by providing exact
but super-polynomial or O(log n)-approximate solutions.
Another series of works have been devoted to evaluate and compare solutions
for the d-Dim h-hops MST problem returned by some heuristics on random
planar instances by performing computer experiments [8, 11, 12, 25, 27]. Almost
all such works adopt random instances.

More recently, a tight analysis of the expected optimal cost for the d-Dim

h-hops MST problem on random instances has been done in [9, 6].
Given a rooted tree T the cost of T , denoted as cost(T ), is the sum of the edge
weights.

Theorem 1 ([9, 6]). Let h and d be fixed positive integers. Let S be a random
instance of n points in a d-cube of side length L and let T be any tree of height
h spanning S. Then, it holds that

cost(T ) =






Θ
(
L · n 1

h

)
if d = 1, α = 1

Θ
(
L · n1− 1

d
+ d−1

dh+1
−d

)
if d ≥ 2, α = 1

Θ
(
L2 · n 1

h

)
if d = 2, α = 2

with high probability.

Here and in the sequel the term with high probability (in short, w.h.p.) means
that the event holds with probability at least 1− e−c·n, for some constant c > 0.
So, according to our input model, claiming that a given bound holds w.h.p. is
equivalent to claim that it holds for almost all inputs [2]. Theorem 1 shows that
the optimal cost quickly decreases in h (even for small, constant values of h).
Actually, an efficient, centralized Divide and Conquer heuristic h-Party (see
Figure 2) is introduced in [9, 6] that yields (w.h.p.) a constant approximation
ratio.

1.1 Our Results

The asymptotically cost-optimal divide and conquer heuristic h-Party (see Fig-
ure 2) proposed in [9, 6] requires global knowledge of the network and centralized
decisions: at each recursive phase, a suitable grid partition of the d-cube Q is
performed. In each element (cell) of the grid, the algorithm runs a leader election
task in order to select a base cell. A cell base, elected in the recursive phase j, is
connected to the root and becomes itself root for the (h− j)-hops Converge-

cast problem on the sub-instance restricted to nodes inside the cell. And so on.
The key-issue of the optimality of this algorithm is the size of the cells (and,



hence, the number of bases selected at each phase). It should be clear that, the
above tasks are unfeasible (or extremely expensive) in our distributed model:
once a (unique) base cell has been selected, all the other nodes of the cell must
agree about that and must know its label and position.

We thus propose a distributed protocol that combines the grid partitioning
and the leader election of h-Party with the greedy approach. Our protocol
h-Prot “simulates” the “optimal” strategy of h-Party (based on grid partition
and leader election), by using local independent random choices : every node (but
the root) decides, independently, to be a leader (i.e. a base) with probability p.
Then, we use a greedy approach in order to establish nodes-to-leader connections.
The choice of parameter p depends on n (and h) and it is a key-ingredient in
the quality of the returned solution.

We consider the (synchronous) ad-hoc network model in the following dis-
tributed fashion: at the starting time, every station knows only its label, its
geographical position and the parameter L (i.e.a “good” bound on the diameter
of region where nodes are located in). Furthermore, no (wireless or not) link
exists before that time. All stations are in the quiescent status but the b: b starts
the protocol by broadcasting a start message with 1-hop transmission of range
L (as we will see, the cost of this root transmission is negligible w.r.t. the overall
protocol and solution costs). We focus on the global energy-cost spent by the
protocol and on the energy cost of the computed range assignment. So, we will
not consider interference and synchronization problems [21]: we assume they
will be eventually solved by using some of the techniques previously introduced
in the literature [4, 22, 24].

Our main result is expressed by the following theorem.

Theorem 2. Let S be a random set of n points in a 2-dim square Q of side
length L and let rangeProt be the range assignment returned by 2-Prot(S, b).
Then, for h = 2, the expected cost of rangeProt satisfies the following bounds

E
(
cost(range

Prot)
)

= O
(
Lαn

2
α+2

)
.

By comparing Theorem 1 with Theorem 2 we thus have that for α = 1 and
α = 2, h-Prot achieves a constant expected approximation ratio.
We emphasize that the expected cost analysis of our protocol departs signifi-
cantly from that of 2-Party, mainly because of two reasons. Firstly, our protocol
makes no cell partition (it cannot!) and so it cannot guarantee that exactly one
leader per cell will be selected. The analysis needs to be amortized and based on
the expected good leader distribution on Q. On the other hand, we need to deal
with two probabilistic distributions: the input one and the one determining our
leader selection. The resulting random variables are not mutually independent.
We also prove that the overall energy cost spent by the stations during the entire
protocol is Θ(cost(rangeProt)).
We believe that Theorem 2 can be extended to any constant h. This question is
still open. However, we performed a large number of computer experiments that
strongly support our conjecture. In particular, we have compared the perfor-
mances of the h-Prot with those of the asymptotically-optimal h-Party and



with those of a prim-based randomized heuristic, named Randomized h-Prim,
that gives good performance in practice (see [8]). The results of this experimental
work are summarized in Figure 3.

Paper’s Organization. In Section 2, we present our protocol. In Section 2.1 we
prove that its expected approximation ratio is constant for h = 2. In Section 2.2
we provide an experimental analysis that compare the proposed protocol with the
h-Party heuristic. Finally, in Section 3, we briefly address some open problems.

2 Distributed Protocol for the Ad-Hoc Model

We consider h-hops Convergecast on the ad-hoc model and we propose a dis-
tributed randomized protocol h-Prot that, given a set S and a root b, constructs
a feasible range assignment rangeProt. The protocol works in phases and assumes
that, at the starting time, every node knows only its label, its geographical po-
sition and L. Each node (station) is equipped by an omni-directional antenna:
it is able to change its transmission range. We will consider the case d = 2 (i.e.
instances on the plane). The details of the protocol executed by station s ∈ S
are described in Figure 1.

Init phase (raws 3–10) The root station b sends a start message to all the
other stations. All the other stations are waiting for this message.

Phase j (raws 13–28) If j < h, all the non-connected stations flip a bit x
with Pr [x = 1] = f(n, h, j, α). If j = h or x = 1 each non-connected
station s sends a search (“search:s”) message (containing its label and its co-
ordinates) at increasing range r (raw 23). Station s stops in sending messages
as soon as it receives an echo message from the closest connected node vs

(“echo:vs”) at level j−1. Node s chooses vs as its father by fixing rangeProt(s)
= d(s, vs). Finally s becomes connected and sets its level to j(raws 18–22).
In the meantime, all the connected stations at level j − 1 are waiting for
messages from non-connected stations. If a search message from a station v
is received (“search:v”) then, if s is the closest connected node to v, it sends
an echo message to v containing its label and its coordinates (raws 25–28).
Notice that, this last step can be easily performed by using the connection
between the connected nodes.

The selection probability Pr [x = 1] is defined as

f(h, j, n, α) = n−λ(h,j,α) where λ(h, j, α) =

∑h−j−1
i=1 (2/α)i

∑h−j
i=1 (2/α)i

.

This function has been inspired by the almost “optimal” centralized heuristic
h-Party: The expected number of selected nodes during phase j equals the
number of bases selected during the j-th recursive step of h-Party.



01: h-Prot(S,b)
02: begin
03: if (s = b) then begin
04: send("start",L

√
2);

05: connected := true;
06: level := 0;
07: end else begin
08: wait("start");
09: connected := false;
10: end
11:

12: for j = 1, ..., h do begin
13: if (connected = false) then
14: if ( j ≤ h − 2 ) then
15: randomly choose a bit x with Pr [x = 1] = f(n, h, j, α);
16: else x = 1;

17: for r = 1, 2, ..., 2ℓ, 2log ⌈ L
√

2 ⌉ do
18: if (connected = false and x = 1) then
19: if (received("echo:vs") = true) then begin
20: range

Prot(s) := d(s, vs);
21: connected := true;
22: level = j;
23: end else send("search:s", r);
24: else
25: if (level = j − 1) then
26: if (received("search:v") = true) then
27: if ( d(s, v) = min{ d( s̃, v ) : s̃ received "search:v" }) then
28: send("echo:s",d(s, v));
29: end

Fig. 1. The protocol h-Prot executed by station s ∈ S



2.1 Probabilistic analysis

Theorem 3 (Energy cost of the protocol.). Let r̂(s) be the maximal trans-
mission range used by s ∈ S during any phase of the protocol. Then, it holds
that

cost(r̂) =
∑

s∈S

(r̂(s))α = Θ(cost(range
Prot))

Proof. When a node s given in a Phase j is selected then its maximal range r̂(s)
will be no larger than twice its final range rangeProt(s). Furthermore, when a
node s ∈ S has been selected in Phase j −1 (so it acts like a potential father), it
will send echo and father messages, during Phase j, at ranges equal to those of
the corresponding sons.3 Let x̂s be the son of s at maximal distance in the final
transmission graph. We have that

∑

s∈S

(r̂(s))α ≤ 2
∑

s∈S

(max{range
Prot(s), range

Prot(xs)})α ≤

≤ 4
∑

s∈S

range
Prot(s)α = Θ(cost(range

Prot)).

⊓⊔
Theorem 4 (Energy cost of the protocol solution.). Energy cost of the
protocol. Let S be a random instance of n nodes selected from a square Q of edge
size L and let b ∈ S. Then, for h = 2, the expected cost of rangeProt satisfies the
following bounds

E
(
cost(range

Prot)
)

= O
(
Lαn

2
α+2

)
.

Proof. Without loss of generality, assume that the root b is the node of index
n. We denote any node selected in the first phase as base and define, for any
node i, Di as the minimal distance between node i and the root and any base.
We denote as pb the probability that a node becomes a base. As for h = 2, this
probability is equal to

f(n, 2, 0, α) = n−λ(2,0,α) = n− α

α+2 .

It holds that,

E
(
cost(range

Prot)
)
≤

n−1∑

i=1

[pb(
√
2L)α + (1− pb)E ((Di)

α)]

≤ (n − 1)(
√

2L)αpb +

n−1∑

i=1

E ((Di)
α) . (3)

3 Observe that, in this case, we can assume that all such nodes (potential father)
known the partial solution constructed so far. So, only the real father will send echo
message to a son.



Where E ((Di)
α) denotes E ((Di)

α| i is not a base ). In order to evaluate the
value E ((Di)

α) we define

∆ =
L

n
1

α+2

Then

E ((Di)
α) ≤ Pr [Di < ∆] ∆α +

∞∑

k=0

Pr
[
2k∆ ≤ Di < 2k+1∆

]
(2k+1∆)α

≤ ∆α

[
1 + 2α

∞∑

k=0

Pr
[
2k∆ ≤ Di < 2k+1∆

]
2kα

]

≤ ∆α

[
1 + 2α

∞∑

k=0

[
Pr

[
Di ≥ 2k∆

]
− Pr

[
Di ≥ 2k+1∆

]]
2kα

]

≤ ∆α

[
1 + 2α

∞∑

k=0

Pr
[
Di ≥ 2k∆

]
2kα

]
,

where Pr [X ] denotes Pr [X | i is not a base ]. Observe that if 2k∆ ≥
√

2L then
Pr

[
Di ≥ 2k∆

]
= 0. So

E ((Di)
α) ≤ ∆α



1 + 2α

⌈log(
√

2L/∆)⌉∑

k=0

Pr
[
Di ≥ 2k∆

]
2kα



 (4)

We now need an upper bound for the probability that Di is larger than a given
parameter ρ, when ρ ≤ 2

√
2L. It holds that,

Pr [Di ≥ ρ] =

(
1 − Ai,ρ

L2

) n−2∑

j=0

Pr [Ni,ρ = j] (1 − pb)
j (5)

where Ni,ρ is the number of nodes, different from i and the root, falling into the
disk of radius ρ and centered at node i, while Ai,ρ is the area of the intersection
between the disk of radius ρ and centered at node i and the square Q. Then, it
holds that

Pr [Ni,ρ = j] =

(
n − 2

j

) (
Ai,ρ

L2

)j (
1 − Ai,ρ

L2

)n−2−j

(6)

By combining (5) and (6), we get

Pr [Di ≥ ρ] =

(
1 − Ai,ρ

L2

) n−2∑

j=0

(
n − 2

j

) (
Ai,ρ

L2

)j (
1 − Ai,ρ

L2

)n−2−j

(1 − pb)
j

=

(
1 − Ai,ρ

L2

) (
1 − pb

Ai,ρ

L2

)n−2

≤
(

1 − pb
ρ2

8L2

)n−1



where, in the last inequality, we use the fact that Ai,ρ ≥ ρ2/8 when ρ ≤ 2
√

2L.
By combining the last inequality with (4), we obtain

E ((Di)
α) ≤ ∆α



1 + 2α

⌈log(
√

2L/∆)⌉∑

k=0

(
1 − pb

(2k∆)2

8L2

)n−1

2kα



 .

By replacing the values of pb and ∆, we get

E ((Di)
α) ≤ Lα

n
α

α+2



1 + 2α

⌈log(
√

2n
1

α+2 )⌉∑

k=0

(
1 − 4k

8n

)n−1

2kα





≤ Lα

n
α

α+2



1 + 2α

⌈log(
√

2n
1

α+2 )⌉∑

k=0

e−
4k

8n
(n−1)2kα





≤ Lα

n
α

α+2



1 + 2α

⌈log(
√

2n
1

α+2 )⌉∑

k=0

e−
4k

16 2kα



 .

We observe that there exists a constant c = c(α) (remind that α is a constant)
such that

1 + 2α

⌈log(
√

2n
1

α+2 )⌉∑

k=0

e−
4k

16 2kα ≤ c.

It thus follows that

E ((Di)
α) ≤ c

Lα

n
α

α+2

.

By replacing this bound in (3), we get

E
(
cost(range

Prot)
)
≤ n(

√
2L)αpb +

n∑

i=1

E ((Di)
α)

≤ (
√

2L)αn
2

α+2 + cn
Lα

n
α

α+2

≤ cLαn
2

α+2

= O
(
Lαn

2
α+2

)
.

⊓⊔
By comparing Theorem 4 with Theorem 1, we can state the following

Corollary 1. The expected approximation factor yielded by 2-Prot(S, b) on
random instances, for h = 2 and α = 1, 2, is bounded by a constant.



procedure h-Party(h, V, p)
if h = 1 then T ← {{x, p}|x ∈ V − {p}};
else begin

k ←
⌊
|V |ηα(h)

⌋
; T ← ∅;

Let l be the side length of the smallest square
containing all points in V ;

Partition the square into a grid of square cells
of side length l

⌊
√

k⌋ ;

Let k′ be the number of cells and let Vi be the
points of V in the i-th cell, 1 ≤ i ≤ k′;

for i← 1 to k′ do
if |Vi| ≥ 1 then begin

a← a random point in Vi;
T ← T ∪ {{a, p}};
if |Vi| > 1 then

T ← T∪ h-Party(h− 1, Vi, a);
end;

end;
output T

Fig. 2. The h-Party heuristic.

2.2 Experimental Evaluations

As mentioned in the Introduction, we believe that Theorem 3 holds for any con-
stant h ≥ 1. However, till now, we have not been able to extend our theoretical
analysis to h > 2. The goal of this section is thus providing some experimental
evidence of our conjecture by considering the cases h = 2, . . . , 8 and α = 1.

We compare the costs of the solutions generated by h-Prot with those gener-
ated by the centralized heuristics h-Party (see Figure 2 for a description) and
with those of a prim-based randomized heuristic, named Randomized h-Prim,
that gives good performance in practice (see [8]). For practical reasons, we have
implemented a variant of the protocol in which: (i) the selected node(s) of phase
j may be connected to any already connected node (though not belonging to
level j − 1); (ii) the probability according to which a node is selected as a base
is scaled by a factor f (0.009 ≤ f ≤ 1) with respect to that adopted in the
theoretical protocol.

All the experiments are carried out for several sizes n of the random instances
(between 100 and 10, 000) and for h = 2, 3, . . . , 8. Node positions of any instance
are chosen independently and uniformly at random in a square of side length
1. For each n and h, the number of instances for each n decreases from 100
to 50 as n grows. Moreover, for every instance five runs are executed (only for
randomized algorithms with randomness). Then, we get the average value (on
these runs) for a comparison among the algorithms.
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Fig. 3. Experimental results.



As we can see from the Tables in Figure 3, h-Prot has performances equivalent
to h-Party. This is not surprising since the selection probability in h-Prot is
defined so as to simulate h-Party. So, it works very well for all h ≤ 5.
Another important contribution of our experimental work is that of providing a
“good” strategy for tuning the selection probability of h-Prot in order to over-
come h-Party and reach Randomized h-Prim’s performances when h is large.
The strategy relies on the following basic fact. Randomized h-Prim works bet-
ter when h is large since it generates much less bases (here, one may see a base as
a node with a large transmission range) than h-Party: Randomized h-Prim

indeed chooses just one base per phase. The strategy is thus to reduce the se-
lection probability f in order to get closer to Randomized h-Prim’s behavior
as h grows. In Figure 3g, we can see the outperforming of our protocol with
f = 0.009 and h = 8 with respect to both h-Party and Randomized h-Prim

and all implementations of h-Prot. Figure 3 indeed shows that, in order to
improve the performance of h-Prot, f should decrease as h increases.

3 Open problems

The most important issue to be addressed is the probabilistic analysis of our
protocol for h ≥ 3. We believe that, for constant values of h, it is possible to
prove that its expected approximation ratio is constant.
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