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Abstract. We present CNFgen, a generator of combinatorial benchmarks
in DIMACS and OPB format. The proof complexity literature is a rich
source not only of hard instances but also of instances that are theoret-
ically easy but “extremal” in different ways, and therefore of potential
interest in the context of SAT solving. Since most of these formulas ap-
pear not to be very well known in the SAT community, however, we
propose CNFgen as a resource to make them readily available for solver
development and evaluation. Many formulas studied in proof complexity
are based on graphs, and CNFgen is also able to generate, parse and do
basic manipulation of such objects. Furthermore, it includes a library
cnfformula giving access to the functionality of CNFgen to Python pro-
grams.

1 Introduction

The Boolean satisfiability problem (SAT) is a foundational problem in computa-
tional complexity theory. It was the first problem proven NP-complete [21], and
is widely believed to be completely infeasible to solve in the worst case—indeed,
a popular starting point for many other impossibility results in computational
complexity theory is the Exponential Time Hypothesis (ETH) [33] postulating
that there are no subexponential-time algorithms for SAT.

From an applied perspective SAT looks very different, however. In the last
15–20 years there has been a dramatic increase in the performance of satisfiability
algorithms, or SAT solvers, and so-called conflict-driven clause learning (CDCL)
solvers [5, 37, 41] are now routinely used to solve real-world instances with
hundreds of thousands or even millions of variables.

Surprisingly, although the performance of current state-of-the-art SAT solvers
is very impressive indeed, our understanding of why they work so well (at least
most of the time) leaves much to be desired. Essentially the only known rigorous
method for analysing SAT solvers is to use tools from proof complexity [22] to
study the potential and limitations of the methods of reasoning they use.

The basic CDCL algorithm searches for resolution proofs [12]. Some solvers
such as PolyBoRi [14, 15] use algebraic Gröbner basis computations, but it seems
hard to make them competitive with resolution-based solvers. A compromise is
to have Gaussian elimination inside a resolution-based solver as in [30, 48]. The
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power of these algebraic methods is captured by the polynomial calculus (PC)
proof system [1, 20]. There are also pseudo-Boolean solvers such as [18, 24, 47, 35]
exploring the geometric proof system cutting planes (CP) [23], although again it
seems like a tough challenge to make these solvers as efficient as CDCL. We refer
to the survey [42] and references therein for a more detailed discussion about
the connections between proof complexity and SAT solving.

It seems fair to say that research in proof complexity into the proof systems
mentioned above has not yielded too much by way of interesting insights for
applied SAT solving so far. This is natural, since this research is driven mainly
by theoretical concerns in computational complexity theory. However, what this
body of work has produced is a wide selection of combinatorial formulas with
interesting properties, and these we believe could be fruitfully mined for insights
by SAT practitioners. As the SAT community starts to focus not only on pro-
ducing blisteringly fast SAT solvers, but also on understanding better why these
SAT solvers work the way they do, we expect that a study of combinatorial
benchmarks could be particularly useful.

This immediately raises a question, however: Why do we need more crafted
SAT problems? Is there really a need for more combinatorial benchmarks on top
of what is already available in the standard SAT competition benchmarks?

We believe the answer is an emphatic “yes.” In fact, it is our feeling that
the SAT community has made quite limited use of crafted benchmarks so far.
Most of these benchmarks are known to be dead hard for the resolution proof
system, and will hence quickly grow out of reach of any CDCL solver (except if
these solvers have dedicated preprocessing techniques to deal with such formulas,
such as cardinality detection or Gaussian reasoning, but even then further minor
tweaks to the benchmarks can easily make them infeasible).

This does not seem to be very informative—these benchmarks are hard sim-
ply because the method of reasoning employed by CDCL solvers cannot solve
them efficiently in principle. A more interesting question is how well SAT solvers
perform when there are short proofs to be found, and the solvers therefore have
the potential to run fast. Studying solvers performance on such benchmarks can
shed light on the quality of proof search, and indicate potential for improvement.

As a case in point, for the first time (to the best of our knowledge) many of
the crafted benchmarks used in the SAT Competition 2016 [4] (and generated
by CNFgen) had the property that they possess extremely short resolution proofs
and that SAT solvers can even be guided to find these proofs by, e.g., simply
following a good fixed variable decision order. Yet the competition results showed
that many of these benchmarks were beyond reach of even the best solvers.

It would seem that such formulas that are easy in theory for resolution but
hard in practice for CDCL would merit further study if we want to understand
what makes CDCL solvers fast and how they can be improved further, and
CNFgen is a convenient tool for providing such formulas. An obvious downside
is that such benchmarks can appear to be somewhat artificial in that one would
not really run into them while solving applied problems. We readily concede
this point. However, these formulas have the very attractive property that they
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can be scaled freely to yield instances of different sizes—as opposed to applied
benchmarks, that typically exist for a fixed size—and running the solvers on
instances from the same family while varying the instance size makes it possible
to tease out the true asymptotic behaviour.

By judiciously choosing formulas with different theoretical properties one can
“stress-test” CDCL solvers on memory management (using formulas with size-
space trade-off properties), restart policy (for formulas that are hard for strict
subsystems of resolution), decision heuristic (for formulas that are easy with a
good fixed variable order), et cetera, as done, e.g., in [34, 26].

Furthermore, even theoretically hard crafted benchmarks can yield interest-
ing insights in that they can be used to compare SAT solvers based on different
methods of reasoning, for instance by benchmarking CDCL against algebraic
solvers on formulas that are hard for resolution but easy for algebraic meth-
ods of reasoning, or against pseudo-Boolean solvers on formulas easy for cut-
ting planes. CNFgen has been heavily used in work on analysing pseudo-Boolean
solvers [25, 52], which has so far generated quite intriguing and counter-intuitive
results. (In particular, state-of-the-art pseudo-Boolean solvers sometimes strug-
gle hopelessly with instances that are dead easy for the cutting planes method
which they use to search for proofs, as also confirmed by benchmarks submitted
to the Pseudo-Boolean Competition 2016 [43].)

The CNFgen tool generates all of the CNF formulas discussed above in the
standard DIMACS and OPB formats, thus making these benchmarks accessible
to the applied SAT community. The included Python library allows formulas
construction and manipulation, useful when encoding problems in SAT.

In Section 2 we present a small selection of the benchmarks in CNFgen and in
Section 3 we illustrate some of its features. Concluding remarks are in Section 4.

2 Some Formula Families in CNFgen

A formula generator is a Python function that outputs a CNF, given parameters.
A CNF is represented in our cnfformula library as a sequence of constrains (e.g.,
clauses, linear constraints, . . . ) defined over a set of named variables. CNFgen
command line tool is essentially a wrapper around the available generators and
the others CNF manipulation and SAT solving utilities in cnfformula.

Let us now describe briefly some examples of formulas available in CNFgen.
Due to space constraints we are very far from giving a full list, and since new fea-
tures are continuously being added such a list would soon be incomplete anyway.
Typing cnfgen --help shows the full list of available formulas. The command
cnfgen <name> <params> generates a formula from the family <name>, where
the descriptions of the parameters needed is shown by cnfgen <name> --help.

Pigeonhole principle formulas (php) claim that m pigeons can be placed in
n separate holes, where the variable xi,j encodes that pigeon i flies to hole j and
the indices range over all i ∈ [m] and j ∈ [n] below. Pigeon clauses

∨n
j=1 xi,j

enforce that every pigeon goes to a hole, and hole clauses xi,j ∨ xi′,j for i < i′

forbid collisions. One can optionally include functionality clauses xi,j ∨ xi,j′ for
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j < j′ and/or onto clauses
∨m

i=1 xi,j specifying that the mapping is one-to-one
and onto, respectively. PHP formulas are unsatisfiable if and only if m > n
and if so require exponentially long proofs for all variants in resolution [29, 44].
Functional onto-PHP formulas are easy for polynomial calculus (PC) but the
other versions are hard (at least for a linear number of pigeons m = O(n)) [40].
All versions are easy for cutting planes (CP).

Tseitin formulas (tseitin) encode linear equation systems over GF(2) gen-
erated from connected graphs G = (V,E) with charge function χ : V → {0, 1}.
Edges e ∈ E are identified with variables xe, and for every vertex v ∈ V we have
the equation

∑
e3v xe ≡ χ(v) (mod 2) encoded in CNF, yielding an unsatisfiable

formula if and only if
∑

v∈V χ(v) 6≡ 0 (mod 2). When G has bounded degree and
is well-connected, the formula is hard for resolution [50] and for PC over fields
of characteristic distinct from 2 [16], but is obviously easy if one can do Gaus-
sian elimination (as in PC over GF(2)). Such Tseitin formulas are also believed
to be hard for CP, but this is a major open problem in proof complexity. For
long, narrow grid graphs, Tseitin formulas exhibit strong time-space trade-offs
for resolution and PC [6, 7].

Ordering principle formulas (op) assert that there is a partial ordering �
of the finite set {e1, . . . , en} so that no element is minimal, where variables
xi,j , i 6= j ∈ [n], encode ei � ej . Clauses xi,j ∨ xj,i and xi,j ∨ xj,k ∨ xi,k for
distinct i, j, k ∈ [n] enforce asymmetry and transitivity, and the non-minimality
claim is encoded as clauses

∨
i∈[n]\{j} xi,j for every j ∈ [n]. The total ordering

principle also includes clauses xi,j ∨ xj,i specifying that the order is total.
The graph ordering principle (gop) is a “sparse version” where the non-
minimality of ej must be witnessed by a neighbour ei in a given graph (which
for the standard version is the complete graph). For well-connected graphs these
formulas are hard for DPLL but easy for resolution [49, 13]. If the well-connected
graphs are sparse, so that all initial clauses have bounded size, the formulas
have the interesting property that any resolution or PC proof must still contain
clauses/polynomials of large size/degree [13, 27].

Random k-CNF formulas (randkcnf) with m clauses over n variables are
generated by randomly picking m out of the 2k

(
n
k

)
possible k-literal clauses

without replacement. These formulas are unsatisfiable with high probability for
m = ∆k · n with ∆k a large enough constant depending on k, where ∆2 = 1
(provably) and ∆3 ≈ 4.26 (empirically). Random k-CNFs for k ≥ 3 are hard for
resolution and PC [19, 3] and most likely also for CP, although this is again a
longstanding open problem.

Pebbling formulas (peb) are defined in terms of directed acyclic graphs (DAGs)
G = (V,E), with vertices v ∈ V identified with variables xv, and contain clauses
saying that (a) source vertices s are true (a unit clause xs) and (b) truth propa-

gates through the DAG (clauses
∨`

i=1 xui ∨xv for each non-source v with prede-
cessors u1, . . . , u`) but (c) sinks z are false (a unit clause xz). Pebbling formulas
are trivially refuted by unit propagation, but combined with transformations as
described in Section 3 they have been used to prove time-space trade-offs for
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resolution, PC, and CP [8, 9, 32, 7] and have also been investigated from an
empirical point of view in [34].

Stone formulas (stone) are similar to pebbling formulas, but here each vertex
of the DAG contains a stone, where (a) stones on sources are red and (b) a non-
source with all predecessors red also has a red stone, but (c) sinks have blue
stones. This unsatisfiable formula has been used to separate general resolution
from so-called regular resolution [2] and has also been investigated when com-
paring the power of resolution and CDCL without restarts [17].

k-clique formulas (kclique) declare that a given graph G = (V,E) has a
k-clique. Variables xi,v, i ∈ [k], v ∈ V , constrained by

∑
v∈V xi,v = 1 identify

k vertices, and clauses xi,u ∨ xj,v for every non-edge {u, v} 6∈ E and i 6= j ∈ [k]
enforce that these vertices form a clique. For k constant it seems plausible that
their proof length should scale roughly like |V |k in the worst case but this remains
wide open even for resolution and only partial results are known [10, 11].

Subset cardinality formulas (subsetcard). For a 0/1 n×n matrix A = (ai,j),
identify positions where ai,j = 1 with variables xi,j . Letting Ri = {j | ai,j =
1} and Cj = {i | ai,j = 1} record the positions of 1s/variables in row i and
column j, the formula encodes the cardinality constraints

∑
j∈Ri

xi,j ≥ |Ri|/2
and

∑
i∈Cj

xi,j ≤ |Ci|/2 for all i, j ∈ [n]. In the case when all rows and columns
have 2k variables, except for one row and column that have 2k + 1 variables,
the formula is unsatisfiable but is hard for resolution and polynomial calculus
if the positions of the variables are “scattered enough” (such as when M is
the bipartite adjacency matrix of an expander graph) [51, 39]. Cutting planes,
however, can just add up all constraints to derive a contradiction immediately.

Even colouring formulas (ec) are defined on connected graphs G = (V,E)
with all vertices having bounded, even degree. Edges e ∈ E correspond to vari-
ables xe, and for all vertices v ∈ V constraints

∑
e3v xe = deg(v)/2 assert that

there is a 0/1-colouring such that each vertex has an equal number of inci-
dent 0- and 1-edges. The formula is satisfiable if and only if the total number of
edges is even. For suitably chosen graphs these formulas are empirically hard for
CDCL [36], but we do not know of any formal resolution lower bounds. Despite
being easy for CP, they still seem hard for pseudo-Boolean solvers.

3 Further tools for CNF Generation and Manipulation

Formula transformations. A common trick to obtain hard proof complexity
benchmarks is to take a CNF formula and replace each variable x by a Boolean
function g(x1, . . . , x`) of arity ` over new variables. As an example, XOR sub-
stitution y ← y1 ⊕ y2, z ← z1 ⊕ z2 applied to the clause y ∨ z yields

(y1 ∨ y2 ∨ z1 ∨ z2)∧ (y1 ∨ y2 ∨ z1 ∨ z2)∧ (y1 ∨ y2 ∨ z1 ∨ z2)∧ (y1 ∨ y2 ∨ z1 ∨ z2) .

Note that such transformations can dramatically increase formula size, and so
they work best when the size of the initial clauses and the arity ` is small. Similar
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substitutions, and also other transformations such as lifting, shuffling, and vari-
able compression from [45], can be applied either in CNFgen during formula gen-
eration (using command line options -T), or alternatively to a DIMACS file using
the included cnftransform program. Multiple occurrences of -T <params> re-
sults in a chain of transformations as in, e.g., this 2-xorified pebbling formula
over the pyramid graph of height 10, with random shuffling.

$ cnfgen peb --pyramid 10 -T xor 2 -T shuffle

Formulas based on graphs. Many formulas in CNFgen are generated from
graphs, which can be either read from a file or produced internally by the tool.
In the next example we build a Tseitin formula over the graph in the file G.gml

and then a graph ordering principle on a random 3-regular graph with 10 vertices.

$ cnfgen tseitin -i G.gml --charge randomodd | minisat

UNSATISFIABLE

$ cnfgen gop --gnd 10 3 | minisat

UNSATISFIABLE

The CNFgen command line provides some basic graph constructions and also
accepts graphs in different formats such as, e.g., Dot [46], DIMACS [38], and
GML [31]. Inside Python there is more flexibility since any NetworkX [28] graph
object can be used, as sketched in the next example.

from cnfformula import GraphColoringFormula

G= ... # build the graph

GraphColoringFormula(G,4). dimacs () # Is G is 4-colourable?

As already discussed in Section 2, the hardness of many formulas generated from
graphs are governed by (different but related notions of) graph expansion. Going
into details is beyond the scope of this paper, but in many cases a randomly
sampled regular graph of bounded vertex degree almost surely has the expansion
required to yield hard instances.

OPB output format. CNFgen supports the OPB format used by pseudo-
Boolean solvers, which use techniques based on cutting planes. CNFgen can pro-
duce formulas that are easy for cutting planes but seem quite hard for pseudo-
Boolean solvers (e.g., subset cardinality formulas, even colouring formulas, some
kinds of k-colouring instances).

4 Concluding Remarks

We propose CNFgen as a convenient tool for generating crafted benchmarks in
DIMACS or OPB. CNFgen makes available a rich selection of formulas appear-
ing in the proof complexity literature, and new formulas can easily be added
by using the cnfformula library. It is our hope that this tool can serve as
something of a one-stop shop for, e.g., SAT practitioners wanting to benchmark
their solvers on tricky combinatorial formulas, competition organizers looking
for crafted instances, proof complexity researchers wanting to test theoretical
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predictions against actual experimental results, and mathematicians performing
theoretical research by reducing to SAT.
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ing proof complexity measures and practical hardness of SAT. In Proceedings of
the 18th International Conference on Principles and Practice of Constraint Pro-
gramming (CP ’12), volume 7514 of Lecture Notes in Computer Science, pages
316–331. Springer, October 2012. 3, 5

[35] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010. 2

[36] Klas Markström. Locality and hard SAT-instances. Journal on Satisfiability,
Boolean Modeling and Computation, 2(1-4):221–227, 2006. 5

[37] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999. Preliminary version in ICCAD ’96. 1

[38] Bart Massey. DIMACS graph format. http://prolland.free.fr/works/

research/dsat/dimacs.html, 2001. Last access: 2016-02-11. 6
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