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In the class about SAT solving we mention how big as a problem is the memory
is limited, and that CDCL algorithm requires so much of it. In this lecture we
discuss the study of space in proof complexity. We first introduce appropriate
variants of the proof systems of interest, and we prove space lower bounds for
them.

We consider a model that takes in account memory when it comes to proof
verification. The study of this model has been initiated by Jacobo Toran and
by Alekhnovich et al. !.

Definition 1. The blackboard model Consider a proof system which is a proof
is a sequence of line and such that each line is either

® anaxiom A, ;
e the derivation of a new line from a constant number of previous lines
Lj, Lj, e Lj,
L

In the blackboard model a derivation is a sequence of memory configurations

(Mo, My, ..., Mr) 1)
each of which is a set of proof lines. My = @, and each M, ; is either:

Axiom download M; U A; where A; is an axiom; or

Inference step M;U L where L1 L2

M;; or

Erasure an arbitrary subset of M;.

The length of such a proof is T, the space of such a proof is the maximum,
among all memory configurations, of their space. The space cost of a con-
figuration depends on the nature of the proof lines, and therefore of on the
original proof system.

This model only makes sense of proof system in which a proof is a se-
quence of proof lines. For each proof system we have to take in account a
different way to apppropriately measure the cost of line.

Definition 2. The space of a memory configuration is measured as
o the number of the clauses (for resolution);

e the total number of monomials in all polynomials (for polynomial calcu-
lus);

Li and{Ly, Ly, ...

! Jacobo Tordn. Lower bounds for space in
resolution. In CSL, pages 362-373, 1999;
and Michael Alekhnovich, Eli Ben-Sasson,
Alexander A. Razborov, and Avi Wigderson.
Space complexity in propositional calculus.
SIAM J. Comput., 31(4):1184-1211, 2002

Massimo Lauria — lauria.massimo@gmail. com


mailto:lauria.massimo@gmail.com
mailto:lauria.massimo@gmail.com

Lecture 8

Introduction to proof complexity

® here the situation is less clear: any CNF can be refuted having only five
inequalities in memory, but of course the coefficients in these inequalities
are very large therefore it may make sense to consider the sum of the log
of all coefficients in memory at each step.>

The study of space for resolution is naturally the most developed. Recently
there has been a string of progress related to polynomial calculus, but there
is still a lot to understand. For cutting planes we really don’t know anything.

If this and next lecture we will only deal with resolution. We already ar-
gued that memory it is very important for CDCL SAT solver. I would say that
it is not clear yet how much resolution space correlate with actual memory
usage in solvers.

An easy case: tree-like resolution.

The space complexity for tree like resolution it is earies to understand. Con-
sider this complexity measure C on binary trees with in-degree either zero or
two,

o if t is a single leaf then C(¢) := 0;

» otherwise the root of t has left and right subtrees t; and 1, respectively,
and we define

C(t) := max{1+min{C(ty),C(t1)},C(ty),C(t:)} .

This complexity measure C () corresponds to the height of the largest com-
plete binary tree embeddable in ¢. The definition of embedding is given be-
low.

Definition 3. Consider two rooted binary trees t, and t,. We say that t,
embeds into ty, if t, can be transformed into t, by a sequence of the following
operations;

e splitting an edge (u,v) into the path of length two made by edges (11, w),
(w,v) where w is a new vertex;

® adding edges and vertices.

Exercise 4. Show that C(f) > h if and only if the complete binary tree of
height /i can be embedded into ¢.

Exercise 5. Consider a tree-like resolution refutation such that its underlying
structure is represented by tree t. Show that when C(t) < h if and only if the
proof can be represented (in the blackboard memory model) in space h + 2.

Corollary 6. If a formula has a tree-like refutation of size S then it has a
tree-like refutation of size S and space O(log S).

Space lower bounds for hard formulas

Space in resolution is essentially the number of clauses that are kept in mem-
ory. If you think about CDCL solver, this roughly correspond to the size of
the clause database.

2Pavel Pudldk, Nicola Galesi, and Neil
Thapen. The space complexity of cutting
planes refutations. In CCC, 2015
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Exercise 7. Show that for every unsatisfiable CNF with n variables there is
a resolution refutation of length 20(") and space 1 4+ O(1).

The previous exercise can legitimately cause some doubt about the neces-
sity of studying space. After all n + O(1) space requirements is not too bad
when it comes to SAT solving. It means that we need to keep more or less all
formula in memory. There are some catches

* A concrete SAT solver needs to know which clauses in the database need
to be preserved. A refutation that requires, say, O(logn) space may be
easier to find than one that requires ()(1n) space, because there is less risk
to purge a useful clause;

* the proof in the above exercise has exponential size, therefore it makes
sense to understand whether to obtain polynomial length it is necessary to
inccrease space usage.

Atserias and Dalmau (2008)3 prove that resolution width essentially lower
bound resolution space. This immediately induces tight bounds for formulas
which require large width.

Theorem 8. Atserias and Dalmau, 2008 Consider any unsatisfiable k-CNF
with a resolution refutation of space S. Then the formula has a refutation of
width at most S + k — 3.

Proof. Proof outline In class we will discuss the proof as presented in Filmus
etal. 4.
The main idea is that we start from a refutation

(MOI Ml/- . ~/MT) (2)
of space S and we get an “inverse” refutation of the same formula
(M, My_y, ..., Mp) 3)

where Ml’ is the negation of M;, espressed as a CNF. Since M; has at most S
clauses, then M{ can be expressed as a CNF in which each clause has width
at most S. Notice that since My is the empty CNF (i.e. the true one), its
negation is the empty DNF (i.e. the false one), which is represented in CNF
form by an empty clause. Vice versa Mt contains the empty clause, so its
DNF representation is the empty DNF, and its negation is the empty CNF.
Therefore the M/, and M) are indeed the starting and ending configuration
of a refutation, respectively.

The new sequence is not a refutation per se. We need to build connec-
tive configurations between Ml’ 41 and Ml’ These connective configuration
increase the width during axiom download of at most k — 2, and do not in-
crease it otherwise. Therefore the final width seems to be S + k — 2. Actu-
ally, thought, we can use the following observation to get the S + k — 3 upper
bound.

3 Albert Atserias and Victor Dalmau. A
combinatorial characterization of resolution
width. J. Comput. Syst. Sci., 74(3):323-334,
2008

“Yuval Filmus, Massimo Lauria, Mladen
Miksa, Jakob Nordstrom, and Marc Vinyals.
From small space to small width in res-
olution. ACM Trans. Comput. Logic,
16(4):28:1-28:15, July 2015
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Claim 9. It is always possible to process a resolution derivation so that the
length does not change, the space does not increase, and so that after every

axiom download the space is at most S — 1.

Proof. Observe that after every axiom download that pushes the space to S
there must be an erasure. In such case we can change the proof to do the
erasure first and, if the erasure didn’t delete the axiom itself from the config-
uration, the axiom download. O

Using the previous claim it is possible to save one from the width. O

Corollary 10. Random k-CNF on n variables and Tseitin formulas on k-
regular expander graphs over n vertices have, when unsatisfiable, resolution
space complexity ©(n).

Exercise 11. Show that if a k-CNF formula has a tree like refutation of

length S, then it is possible to find a resolution refutation in time nOlog S+k)

Exercise 12. More difficult Show that if a k-CNF formula has a tree like
refutation of length S, then it is possible to find a tree-like resolution refutation

in time n©OU085+k)

Space lower bounds and trade-offs for easy formulas

This is actually the most interesting and developed part of the theory. We
won’t cover much of it in this lecture, but we will spend next lecture on it. The
theory is based on the concept of pebbling of a graph. This concept has been
used to model space in deterministic and non-deterministic computation.

The pebbling tautologies are strongly connected with this concept. While
so far we prove space lower bounds only for formula that require large width
(and therefore that are hard), pebbling tautologies have proofs that are simul-
taneously

e short;

¢ small width;

 and nevertheless may require large space;

* or exhibit trade-off behaviors between proof length and proof space.

For an overview of this theory I suggest the survey of Nordstrém.> In next
lecture we will illustrate the main ideas of the theory, and we will show some
results in it.

Trade-off on Tseitin grids.

All trade-off results for pebbling formula will always go under the linear space
regime. If we allow unlimited space to refute the formula, then linear space
is sufficient. Nevertheless it is possible to prove trade-offs in the superpoly-
nomial regime using Tseitin formulas over grid graphs of length ¢ and width
w, where all edges are doubled edges (see Figure 1).

5 Jakob Nordstrom. Pebble games, proof
complexity and time-space trade-offs.
Logical Methods in Computer Science,
9:15:1-15:63, September 2013
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Theorem 13 (Beck, Nordstrom, Tang, 2013). Consider an unsatisfiable Tseitin

Jormula over aw X £ grid graph with double edges, with odd charge function.
Let n = O(w X {) the size of the formula. It holds that

e the formula has a resolution refutation of length O(2wno(1)) and clause
space 20(w) 4 ,0(1),

o the formula has a tree-like resolution refutation of length n°®) and clause
space O(wlogn),

o fl<w< n/4, then if a resolution refutation has length L and clause
space S,
loglogn
2Q(w) Q(logloglog”)

L=|——
S

The previous theorem was shown in Beck, Nordstrom, Tang (2013), is an
evolution of a similar results by Beame, Beck and Impagliazzo (2012).6

Exercise 14. Show that the Tseitin formula over an w x ¢ grid as above’
has a resolution refutation of length O(2°(®)¢) and clause space 20(®),
(Hint: think of summing all linear equations left to right, have at each point in time a

linear equation with O(w) variables in memory.)

Exercise 15. Show that the formula described above has a tree-like resolu-
tion refutation of length £°(®) and clause space O(wlog £).
(Hint: build a decision tree of height O(wlog () using a divide and conquer ap-

proach. Plese provide a proof that this construction gives the desired upper bound.)
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