Introduction to proof complexity

Lecture 7

Lecture 7— SAT solvers in theory and practice

Massimo Lauria — lauria.massimo@gmail.com
Office 1107, Ookayama West Sth Building

Tuesday — November 17th, 2015 (This document was updated on June 21, 2017)

We discuss concrete SAT solver software. We will comment about their appli-
cations and about their performance in practice. We will discuss some for-
mal connection between theoretical models of CDCL solvers and resolution
complexity. 1 will briefly mention some facts about non-resolution based SAT
solvers.

Pictures in this lecture come from Marijn Heule slides.

For a long time most SAT solving was based on decision tree. A SAT
solver would pick an unassigned variable, set it to some value, and continue
on the restricted formula.! The algorithm would use clever heuristics in order
to reduce as much as possible the final size of the tree. One obvious heuristic
that is used massively in all solvers up to date, the unit propagation:

If the CNF F has unit clauses (i.e. clauses that contains only literal each) the
next decision is to set one of those literals to true.

This has been the state of the art for SAT solving up to the end of the
nineties. A major breakthrough was obtained when solvers realized how to
learn new clauses during the exploration of the search space. Now SAT solver
can solve formulas with millions of variables and clauses, mostly coming
from industrial applications as

* artificial intelligence;

* software static analysis;
* cryptography;

¢ hardware verification;
¢ and many more...

A good source of information about CDCL solvers in Chapter 4 of the Hand-
book of Satisfiability.>

Conflict Driven Clause Learning (CDCL) solvers

The solver uses data structure for (1) a stack (2) clause database. At the be-
ginning the database contains the clauses of the formula, the stack is empty.
A CDCL solver decides variable assignments and unit propagates them
until a clause is falsified, at which point a clause is learned from the conflict
and is added to the clause database and the search backtracks.
The assignments are saved on the stack. Each assignment has a decision
level. The first unit propagations are at decision decision level 0, then the

'Martin Davis, George Logemann, and
Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5:394—
397, July 1962

2 Armin Biere, Marijn J. H. Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. 10S
Press, 2009

Massimo Lauria — lauria.massimo@gmail. com

mailto:lauria.massimo@gmail.com
http://www.birs.ca/workshops/2014/14w5101/files/CDCL-MarijnHeule.pdf
mailto:lauria.massimo@gmail.com

Lecture 7

Introduction to proof complexity

first variable decided by the solver initiate decision level 1, and all following
unit propagations are at level 1 themselves. The next decision opens decision
level 2, and so on.

Remark 1. Itis very important to stress that practically all CDCL solvers are
greedy, in the sense that if there is a unit propagation available, that unit is
propagated, and that if there is some conflict (i.e. the assignment on the stack

falsifies a clause in the database) then conflict analysis starts immediately.

The state of the solver is identified by the state of the stack and of the clause
database, and by the mode of operation. It is convenient to describe the solver
as being in one of the four modes DEFAULT (where it starts), UNIT, CON-
FLICT, or DECISION, where transitions are performed as described below.

DerauLTt If all variables in the formula are assigned, the solver halts and
outputs SAT. If the stack falsifies a clause in the database, the solver moves
to ConFLICT. Otherwise if the assignment on the stack produces a unit
propagation, the solver transits to UNIT mode. If none of the above cases
apply, the solver uses its restart policy to decide whether to empty the
stack, and its clause database reduction policy to decide whether to shrink
remove clauses from the database. After this, it then moves to DECISION.

ConrLict If stack has only decision level 0, the solver outputs UNSAT. Oth-
erwise the solver applies the conflict analysis to derive learn a clause and
then backjumps (i.e. unrolls some decision levels from the stack) and goes

to DEFAULT.3

Unit The solver picks a clause that has all but one literals falsified on the
stack and add to the stack that the remaining literal is set to true. Then
moves to DEFAULT mode.

DecisioN The solver uses the decision scheme to determine an assignment

with which to extend the trail and moves to DEFAULT mode.

The state of the solver is stable if it makes the solver move from DE-
FAULT mode to DEcisioN mode and a is a conflict if it causes a move from
DEerFAuLT to ConFLIcT. The solver implementation need to specify few
components.

* Decision scheme: how to pick the next variable and the next value? We
will discuss this later.

* The order of the unit propagations in case there are multiple ones. Usually
implementation dependent.

 Restart policy: when to force a flush of the stack. We won’t discuss this.

* Clause database reduction policy: when and how remove clauses from the
database.* We won’t discuss this.

* the conflict analysis. We will discuss it next.

3In essentially all conflict analysis tech-
niques used in practice, at this point the
learned clause immediately causes a unit
propagation. We will see later techniques for
conflict analysis like that.

4 A SAT solver would fill the memory of
even a powerful machine in seconds, so it
needs to clean up the database very aggres-
sively.

2 Massimo Lauria — lauria.massimo@gmail. com

mailto:lauria.massimo@gmail.com

Introduction to proof complexity

Lecture 7

Conflict analysis and clause learning

How do we learn clauses? While the solver decide variables and propagates
unit, it also produced a conflict graph, a directed acyclic graph where nodes
correspond to assignments, where each node is labeled by its decision level.
Decision have indegree zero and each unit propagation has an incoming edges
from all the assignments that triggered that unit propagation. Conflict: at
some point a clause would unit propagate an assignment x = b when instead
x = —b is on the stack. This is a conflict. The solver stops and analyze the
implication graph to learn a clause (see Figure 1).

1. We find a cut of the graph so that the conflict is on the right side”, and all
decisions are on the left side;

2. we take the partial assignment p made by all the variables assignments
that have an outgoing edge crossing the cut;

3. we add to the clause obtained by negating p to the clause database;
4. we remove one or more decision levels from from the stack.
Point (1) and (4) are the thing that depend on the clause learning scheme.

Most solver use assertive schemes (explained later) and in particular the 1UIP
scheme.

Exercise 2. Prove that the learned clause can be derived, in resolution, from
all clauses in the database. What is the shape of this resolution derivation?

(x1 Vo) A (0)
(5 VX4V Xs) A x5 =1
(X3 VX V X4) A ©
]:extra X2—1

Unique implication points and First UIP

Once we reach a contradiction in the implication graph we need to choose
how to analyze the conflict and which clause to learn. We need to decide

> We assume the graph is oriented from left
to right.

Figure 1: The conflict analysis (From the
slides of Marijn Heule)

Massimo Lauria — lauria.massimo@gmail. com

mailto:lauria.massimo@gmail.com

Lecture 7

Introduction to proof complexity

(\/X4) VAN

(X3 V V)_<5) N
(X3 V3V) A
fextra

which clause to learn and to add to the database. In the example in Figure 2
we see that immediately after the backjump there is a unit propagation trig-
gered by the clause just leaned. This is not an accident. Most of the time the
learning scheme is tuned to obtain precisely this phenomenon. In Figure 3, 4
and 5 we see an example from Marques-Silva and Sakallah (1999)° we the
same implication graph provides different clauses, depending on which cut
is chosen. In Figure 3 we use the latest possible cut, which gives a clause
that contains three literals from the latest decision level. It is more practical
instead to use an asserting clause.

Definition 3. An asserting clause in a conflict graph is a clause that contains
only one literal from the latest decision level. Such literal is called asserting
literal. The latest decision level among the literals of a clause is called the
asserting level. An asserting learning scheme learns an assertive clause and
then backjumps to the asserting decision level.

This naming is due to the following fact.

Proposition 4. After the backjump, the asserting literal is immediately unit
propagated.

One particular way to implement an assertive learning scheme looks a cut
where exactly one node from the last decision level has an edge that crosses
the cut. Each such node is called unique implication point (UIP), and there
may be several of them. The implication graph in Figures 3, 4 and 5 has three
unique implication points. Most CDCL solvers pick the first one (1UIP)’
which is one closest to the conflict (see Figure 4), but there are other options
as well (see Figure 5). It seems that the first implication point works well in
practice, but this is just hands-on experience.

Figure 2: Backjump (From the slides of Mar-
ijn Heule)

®Jodo P Marques-Silva and Karem A
Sakallah. Grasp: A search algorithm for
propositional satisfiability. Computers,
IEEE Transactions on, 48(5):506-521, 1999

"Lintao Zhang, Conor F Madigan,
Matthew H Moskewicz, and Sharad Malik.
Efficient conflict driven learning in a
boolean satisfiability solver. In Proceedings
of the 2001 IEEE/ACM international
conference on Computer-aided design,

paces 270225 TEEE Precs 2001
pages=+ OO T eSS, 200t

4 Massimo Lauria — lauria.massimo@gmail. com

mailto:lauria.massimo@gmail.com

Introduction to proof complexity Lecture 7

X4:1

620\ X12:0

X

a\; A x15=1
X11@:< Jxezo =

@/wzl x18=0

x13=0

(—\Xl V=x3V X5V X7V —\Xlg) x19=1

tri-asserting clause

Figure 3: Which clause to learn? (From the
slides of Marijn Heule)

(X10 V —xg V x17 V ﬂXlg) x19=1

first unique implication point

Figure 4: First UIP (From the slides of Mar-
ijn Heule)

Massimo Lauria — lauria.massimo@gmail. com 5

mailto:lauria.massimo@gmail.com

Lecture 7 Introduction to proof complexity

(X2 V —xg Vxg Vxiz V —|X19) x19=1

second unique implication point

Figure 5: Second UIP (From the slides of

Marijn Heule)
Watched literals
A CDCL solver spend almost 100% of its running time performing unit prop-
agations. Therefore it is essential to make them fast. Once a literal is falsified,
in theory all clauses containing it would need to be updated. It is expensive to
do that. The idea is to keep only two warched literal per clause.® A clause C $ M.W. Moskewicz, C.F. Madigan, Y. Zhao,

L. Zhang, and S. Malik. Chaff: Engineering

. an efficient sat solver. In Proceedings of the
is falsified by the decision procedure then instead of updating all clauses that 38th annual Design Automation Conference,

contain that literal, we just update the ones for which the literal is “watched”. pages 530-535. ACM, 2001

that contains two or more literals has two of them highlighted. When a literal

* First we look for another unassigned literal to watch;
* if the clause is actually satisfied, we skip it;

« if there is no such literal then it means that there only one unsassigned
literal and that it is time to do unit propagation.

Decision scheme: VSIDS

The decision scheme is used to choose the next variable to assign when there
are no unit propagations. The dominant decision heuristic in practice is VSIDS,

which stands for Variable State Independent Decaying Sum. ? ®M.W. Moskewicz, C.F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In Proceedings of the
38th annual Design Automation Conference,
pages 530-535. ACM, 2001

We won’t discuss so much the details for this heuristic, but just how it
works.

1. Each literal has a counter, initialized to O;

2. when a clause is added to the database, the counter of all involved variables
(both polarities) increases;

6 Massimo Lauria — lauria.massimo@gmail. com

mailto:lauria.massimo@gmail.com

Introduction to proof complexity Lecture 7

10

3. if'the solver needs to make a decision, picks the literal with highest score; 10 Ties broken according to implementation.

4. periodically all counter are scaled by a constant < 1, e.g. 0.9.

The idea is that the solver should focus on variables involved in the last
conflicts, and older operation should weight less.

Other improvements

While moving to CDCL solver produced a huge qualitatively jump in perfor-
mances, there have been other improvements. While these improvements are
more specialized and sometimes are even detrimental to the runtime, are very
useful in practice.

* Preprocessing: the formula is analyzed and transformed before the CDCL
solver starts operating;

* In-processing: a fast and quick form of processing can be done even to the
clause database, while the CDCL algorithm run;

¢ detection and special management of parity and cardinality constraints;
* many others...

Unfortunately many of these improvements cannot be modeled in resolu-
tion, and indeed in some cases they were introduces to manage formulas that
were theoretically difficult even for general resolution, and that then become
easy with this improvements.

Do SAT solver find good resolution proof?

We already discussed how the clause learned by the CDCL solver are de-
ducible in resolution. The connection holds in the other direction, but we need
to make strong assumption since resolution proofs are non-deterministic, while
an arbitrary CDCL solver could use arbitrarly bad heuristic. The greedy ap-
proach of the solver also gets in the way.

In (Pipatsrisawat and Darwiche, 2011)!! they show that if we grant non- ! Knot Pipatsrisawat and Adnan Darwiche.
On the power of clause-learning sat solvers
as resolution engines. Artificial Intelligence,
parable with the shortest one. 175(2):512 — 525, 2011

In (Atserias, Fichte, Thurley, 201 l)12 they assume that the learning scheme 12 Albert Atserias, Johannes Klaus Fichte,
and Marc Thurley. Clause-learning al-

. . . o L gorithms with many restarts and bounded-
est proof. But if the width of the proof is w and the decision heuristic is width resolution. J. Artif. Intell. Res. (JAIR),

deterministic decision heuristic then the solver finds a refutation of size com-

is computed by the solver itself, therefore it is impossible to find the short-

sufficiently random, then the solver finds a refutation in about n* steps. 40:353-373, 2011
The two results use very similar proof strategies, and indeed they essen-
tially prove the same result under different perspectives.

Theorem 5 (Atserias, Fichte, Thurley, 2011). A CDCL sat solver with “suffi-
ciently” random decision heuristic refutes, with probability at least 1/2 any
CNF on n variables having a resolution refutation of width k and length m
in time mPW . 1 ynder any asserting learning scheme.

Massimo Lauria — lauria.massimo@gmail. com 7

mailto:lauria.massimo@gmail.com

Lecture 7

Introduction to proof complexity

Theorem 6 (Pipatsrisawat and Darwiche, 2011). A CDCL sat solver with
non-deterministic decision heuristic refutes any CNF having a resolution refu-

o)

tation of length m in time m~\"/, under any asserting learning scheme.

These theorems have a problem, when used to analyze CDCL solvers. One
small issue is that they rely on very frequent restarts, which is not exaclty
realistic for many solvers. But the worst issue is that they hold only if the
clause database is never cleaned up and if no clause is forgotten. This is
definitely unrealistic. Memory is one of the major concern in CDCL SAT
solving.

References

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley.
Clause-learning algorithms with many restarts and bounded-
width resolution. J. Artif. Intell. Res. (JAIR), 40:353-373,
2011.

[BHVYMWO09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and
Toby Walsh, editors. Handbook of Satisfiability, volume 185

of Frontiers in Artificial Intelligence and Applications. 10S
Press, 2009.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A
machine program for theorem-proving. Commun. ACM,
5:394-397, July 1962.

[MMZ101] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient sat solver. In Pro-

ceedings of the 38th annual Design Automation Conference,
pages 530-535. ACM, 2001.

[MSS99] Joao P Marques-Silva and Karem A Sakallah. Grasp: A search
algorithm for propositional satisfiability. Computers, IEEE
Transactions on, 48(5):506-521, 1999.

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of
clause-learning sat solvers as resolution engines. Artificial In-
telligence, 175(2):512 — 525, 2011.

[ZMMMO1] Lintao Zhang, Conor F Madigan, Matthew H Moskewicz, and
Sharad Malik. Efficient conflict driven learning in a boolean
satisfiability solver. In Proceedings of the 2001 IEEE/ACM in-

ternational conference on Computer-aided design, pages 279—
285. IEEE Press, 2001.

8 Massimo Lauria — lauria.massimo@gmail. com

mailto:lauria.massimo@gmail.com

	Conflict Driven Clause Learning (CDCL) solvers
	Conflict analysis and clause learning
	Unique implication points and First UIP
	Watched literals
	Decision scheme: VSIDS
	Other improvements
	Do SAT solver find good resolution proof?

