
Introduction to proof complexity Lecture 1

Lecture 1— Basics of Proof systems, and Resolution
Massimo Lauria — lauria.massimo@gmail.com

Office 1107, Ookayama West 8th Building

Tuesday — October 20th, 2015 (This document was updated on June 21, 2017)

We introduce the concept of proof system, and of proof complexity, which is
the study of propositional proofs. We motivate this study with connections with
computational complexity and with SAT algorithms. Then we introduce resolu-
tion, the most important proof system in propositional logic. We setup the proof
of the fact that the pigeohole principle requires large refutations in resolution.

The course deals with proof of propositional tautologies, or alternatively
with refutations of CNF formulas (Conjunctive Normal Form). CNF formu-
las are obviously falsifiable but it is NP-complete to decide whether they are
satisfiable (i.e. to decide whether there exists an assignment that satisfies all
the clauses). This means that there is no known efficient algorithm for it, and
indeed many people think that such algorithm does not exists at all. Unfortu-
nately proving such a claim is one of the most important and hard problem in
contemporary mathematics.

We limit ourself to propositional formulas in form of a CNF. That is not
too restrictive, since from any propositional formula Ψ it is possible to get a
CNF formula φ that is unsatisfiable if and only if Ψ is a tautology (i.e. a true
formula in propositional logic). When we refer to a CNFwe will often use the
words “proof” as a synonymous of “refutation”, with the intended meaning
that the proof of a CNF is actually its refutation. Furthermore we recall that
deciding whether a CNF is unsatisfiable is a coNP-complete problem, and it
is essentially equivalent to proving propositional theorems.

Exercise 1. Prove that for any propositional formula Ψ(~x) over connectives
{¬,∨,∧,→} there exists a CNF φ(~x,~y) such that Ψ is a tautology if and
only if φ is unsatisfiable, and φ has length at most linear in the length of Ψ.

Let Unsat denote the set of all unsatisfiable CNFs, a proof system is a
mechanism to certify (or “witness”) that a certain input φ is indeed in Unsat.
The standard definition of a proof system is due to Cook et al.1. 1 Stephen A. Cook and Robert A. Reckhow.

The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44:36–
50, 1979

The definition of proof system in these lec-
tures has been given just for the language
Unsat, but it is easy to see that you can de-
fine proof systems for any language.

Definition 2 (Classic definition). A proof system is a surjective polynomial
time computable function

P : {0, 1}∗ −→ Unsat,

and a refutation of φ ∈ Unsat is a string π ∈ {0, 1}∗ so that P(π) = φ.

The classic definition is very neat, but an alternative definition is closer in
spirit to the process of proof verification.

Definition 3 (Verifier definition). A proof system is a polynomial time Turing
machine M(·, ·) so that

φ ∈ Unsat there is some π ∈ {0, 1}∗ so that M(φ, π) accepts;

φ 6∈ Unsat for any π ∈ {0, 1}∗ M(φ, π) rejects.

If M(φ, π) accepts then π is a refutation of φ.

Massimo Lauria — lauria.massimo@gmail.com 1

mailto:lauria.massimo@gmail.com
mailto:lauria.massimo@gmail.com

Lecture 1 Introduction to proof complexity

The length of proofs and computational complexity

Definition 3 is almost the same as the definition of the complexity class NP.
The essential difference is that in the latter the length of the proof is required
to be polynomial in the length of the formula. The length of proofs is the
principal complexity measure studied in proof complexity. If a statement
requires a too long proof then for all practical purposes it has no proof at all.
Gödel himself had thought about this issue2. 2 Kurt Gödel. A letter to John von Neumann,

March 20, 1956. In P. Clote and J. Kra-
jíček, editors, Arithmetic, Proof Theory, and
Computational Complexity, pages 7–9. Ox-
ford University Press, 1993

Definition 4. A proof system is called polynomially bounded if all φ ∈
Unsat have at least one refutation of polynomial size with respect to length
of φ.

Fact 5. A polynomially bounded proof system for Unsat exists if and only
if NP = coNP. In particular if no polynomially bounded proof system for
Unsat exists, then P 6= NP.

Exercise 6. Prove Fact 5.

The previous fact is indeed the historical reason of studying the length
of proofs. The idea at the time was to prove the existence of formulas with
no short proofs, for increasingly strong proof systems. The hope was that
at some point it could have been possible to find a formula with no short
proof in any proof system. Compare this with the way circuit classes were
studied in computational complexity. Lower bounds on the size of circuits
were presented as partial steps toward the final goal of separating P fromNP.

The goal of proof complexity.

The main theoretical goal of proof complexity is to prove unconditional lower
bounds for the refutation length of specific families of CNFs.

Simulations and relative strength

The strength of two proof systems can be compared using the length of proof
as measure.

Definition 7 (Simulation and p-simulation). Consider two proof system M
and N. We say that M simulates N if there exists c > 0 such that for every
φ ∈ Unsat and π where N(φ, π) accepts, there is another string π′ of
length at most |π|c such that M(φ, π′) accepts.

We say that M p-simulates N if there exists a polynomial time algorithm
A such that for every φ ∈ Unsat and π where N(φ, π) accepts, then
M(φ, A(π)) accepts.

The concept of simulation is useful to classify proof systems. An imme-
diate consequence of the notion of simulation is that when M simulates N,
any proof length lower bound for M holds for N as well, and that any short
proof in N can be transformed into a short proof in M. In general we say that
a proof system is stronger than another one if it can simulate it (or even better
p-simulate it).

2 Massimo Lauria — lauria.massimo@gmail.com

mailto:lauria.massimo@gmail.com

Introduction to proof complexity Lecture 1

Proof complexity and SAT solvers

Determining satisfiability seems a purely theoretical problem, nevertheless it
is expressive enough to capture many problems coming from industrial and
scientific applications as

• artificial intelligence;

• software static analysis;

• cryptography;

• hardware verification;

• and many more. . .

The reason for such a boost in applications is that since the end of the
’90s the algorithms for practical SAT have improved dramatically3. Now it 3 João P Marques-Silva and Karem A

Sakallah. Grasp: A search algorithm
for propositional satisfiability. Comput-
ers, IEEE Transactions on, 48(5):506–521,
1999; and M.W. Moskewicz, C.F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient sat solver. In Proceed-
ings of the 38th annual Design Automation
Conference, pages 530–535. ACM, 2001

is routine to solve formulas with up to 100000 or 1000000 variables, which
was absolutely impossible earlier.

If a SAT solver claims that a CNF is unsatisfiable, then the trace of its execution
is a refutation of the CNF in the sense of Definition 3. This also means that a
lower bound for proof length gives a lower bound of the running time of the
SAT solver.

When run on unsatisfiable formulas, many SAT solvers (or at least their
main components) produce traces which are, up to minor translation, refu-
tations expressible in relatively weak proof systems for which we know how
to prove lower bounds. That means that we know formulas that are hard for
these SAT solvers.

SAT solvers look for proofs in weak proof systems. Since such proofs may be
very long, why don’t we use solvers that correspond to stronger systems?

This is a reasonable question. Unfortunately using a stronger proof system
could make even more difficult to find a short proof, since usually the proof
language has more flexibility and more degrees of freedom, and the search
space is much larger. This is the so called problem of automatization of a
proof system.

Definition 8 (Proof search and automatization). A proof search algorithm
AP for a proof system P is an algorithm that gets a CNF formula φ in input
and

φ ∈ Unsat outputs π such that P(φ, π) accepts;

φ 6∈ Unsat reports that φ is satisfiable.

A proof system P is automatizable (resp. quasi-automatizable) if it has a
proof search algorithm AP such that for every φ ∈ Unsat algorithm AP(φ)

runs in time at most polynomial (resp. quasi-polynomial) with respect to the
length of the shortest proof of φ.

Massimo Lauria — lauria.massimo@gmail.com 3

mailto:lauria.massimo@gmail.com

Lecture 1 Introduction to proof complexity

Resolution proof system

Resolution4 is definitely themost important proof system in literature. It is for 4

sure the most studied by theoretician and by people developing SAT solvers.
To introduce resolution we need some definitions. A literal over a Boolean

variable x is either the variable x itself (a positive literal) or its negation that
is denoted either as x̄ or ¬x (a negative literal).

A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals, and k is the width
of clause C.

A k-clause is a clause with k literals. A CNF formula φ = C1 ∧ · · · ∧ Cm

is a conjunction of clauses. If all clauses in a CNF have at most k literals each,
then we call it a k-CNF. We denote the logical true value as> and the logical
false value as ⊥. Sometime we encode truth as 1 and false as 0, too. 5 The 5 While this is a standard encoding, we may

see other ways to encode booleans. In alge-
braic proof systems it is convenient to use
0 for true and 1 for false. In the so called
Fourier encoding it is convenient to use −1
for true and 1 for false.

clause with no literals is the empty clause, it is always false and is denoted
either as� or ⊥. The empty CNF formula is the CNF with no clauses and it
is always true.

Definition 9 (Resolution proof system). A resolution derivation of a clause C
from a CNF formula φ is a sequence of clauses π = (C1, . . . , C`) such that
C` = C and for 1 ≤ i ≤ ` the clause Ci is obtained by one of the following
inference rules:

• Axiom: Ci is a clause in φ (an axiom clause);

• Resolution: Ci = A ∨ B, where Cj = A ∨ x and Cj′ = B ∨ x̄ for 1 ≤
j, j′ < i;

• Weakening: Cj ⊆ Ci for some 1 ≤ j < i.

A resolution derivation of ⊥ from φ is called a resolution refutation of φ.
The width of a resolution proof π is the maximal number of literals among
clauses in any clause Ci in π, and the size (or length) of π = (C1, . . . , C`)

is `.

Exercise 10 (Correctness). Prove that if a CNF formula φ has a refutation,
then it is unsatisfiable.

Exercise 11. Prove that any resolution derivation of C from φ that uses
weakening rule can be transformed into a resolution derivation of some C′ ⊆
C that does not use the weakening rule and has width and length no larger
than the original derivation. In particular this shows that the weakening rule
is not necessary for resolution refutations.

Every resolution derivationπ = (C1, . . . , C`) is essentially directed acyclic
graph (DAG) with vertices labelled by clauses Ci in π and edges (Cj, Ci) if
Ci is obtained by a resolution or a weakening step and Cj is used as a premise
in that step. The derivation π is said to be tree-like if that directed graph is a
rooted tree, oriented from leaves to the root.

Definition 12. A decision tree for a CNF φ is a rooted binary tree where
each internal node is labeled by a variable of φ and has two outgoing edges
labeled by 0 and 1, respectively, and where no variable label occurs twice on

4 Massimo Lauria — lauria.massimo@gmail.com

mailto:lauria.massimo@gmail.com

Introduction to proof complexity Lecture 1

any root-to-leaf path. For any node q in the tree we associate an assignment
ρq as follows: if q is the root then ρq = ∅; if q has parent p then ρq =

ρp ∪ {x = b} where x is the variable labeling node p and b ∈ {0, 1} is the
value associated to the edge connecting q to p. The label on a leaf node q
depends on the partial assignment corresponding to that node. It is either

• the value > when ρq satisfies formula φ; or

• some clause of φ falsified by ρq otherwise.

Exercise 13. An unsatisfiable CNF formula φ has a decision tree with at
most S nodes if and only if it has a tree-like resolution refutation of length at
most S.

Exercise 14 (Completeness). Prove that any unsatisfiable φ has a resolution
refutation.

How to find a resolution refutation? It is possible to find the shortest one
or some other refutation not too much longer? Finding the shortest refutation
is NP-hard6, and even finding one at most polynomially larger is difficult, 6 Kazuo Iwama. Complexity of finding short

resolution proofs. In Igor Prívara and Pe-
ter Ruzicka, editors,MFCS, volume 1295 of
Lecture Notes in Computer Science, pages
309–318. Springer, 1997

unless the very plausible complexity hypothesis FPT 6= W[P] fails7.

7 Michael Alekhnovich and Alexander A.
Razborov. Resolution is not automatizable
unless W[P] is tractable. SIAM J. Comput.,
38(4):1347–1363, 2008; and K. Eickmeyer,
Martin Grohe, and Magdalena Grüber. Ap-
proximation of natural w [p]-complete min-
imisation problems is hard. In 23rd Annual
IEEE Conference on Computational Com-
plexity, pages 8–18. IEEE, 2008

Next lecture

In the next lecture we will show that a 2Ω(n) lower bounds for the CNF for-
mulation of the pigeonhole principle with n + 1 pigeons and n holes. The
formula is∨

j∈[n]
pi,j for every i ∈ [n + 1]; (1)

p̄i,j ∨ p̄i′ ,j for every distinct i, i′ ∈ [n + 1] and j ∈ [n]; (2)

where the first clauses claim that all pigeons must have a hole (pigeon axioms)
and the other clauses claim that no two pigeons can sit in the same hole (hole
axioms).

Further reading

In this lecture we saw a brief introduction to the main concepts of proof com-
plexity. Other than the references already mentioned, it may be useful to
check the following surveys or book chapters. More references specific to
each lectures will be included in later handouts.

Surveys

• The Complexity of Propositional Proofs. general-purpose survey of proof
complexity. 8

8 Nathan Segerlind. The complexity of
propositional proofs. Bulletin of symbolic
Logic, 13(4):482–537, 2007

Massimo Lauria — lauria.massimo@gmail.com 5

mailto:lauria.massimo@gmail.com

Lecture 1 Introduction to proof complexity

• Propositional Proof Complexity: Past, Present and Future. An older gen-
eral purpose survey. 9 9 Paul Beame and Toniann Pitassi. Propo-

sitional proof complexity: Past, present, and
future. In Current Trends in Theoretical
Computer Science, pages 42–70. World Sci-
entific Publishing, 2001

• Towards NP–P via Proof Complexity and Search. A survey motivated by
questions related to search problems, and to the P vs NP problem. 10

10 Samuel R. Buss. Towards NP–P via proof
complexity and search. Annals of Pure and
Applied Logic, 163(7):906–917, 2012

Books and book chapters

• Krajíček: Bounded Arithmetic, Propositional Logic, and Complexity The-
ory (Cambridge University Press)

• Chapter 5 in Clote, Kranakis : Boolean Functions and Computation Mod-
els (Springer).

• Chapter 18-19 in Jukna : Boolean Function Complexity (Springer)

References

[AR08] Michael Alekhnovich and Alexander A. Razborov. Resolution
is not automatizable unless W[P] is tractable. SIAM J. Comput.,
38(4):1347–1363, 2008.

[BP01] Paul Beame and Toniann Pitassi. Propositional proof complex-
ity: Past, present, and future. In Current Trends in Theoretical
Computer Science, pages 42–70. World Scientific Publishing,
2001.

[Bus12] Samuel R. Buss. Towards NP–P via proof complexity and
search. Annals of Pure and Applied Logic, 163(7):906–917,
2012.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative effi-
ciency of propositional proof systems. Journal of Symbolic
Logic, 44:36–50, 1979.

[EGG08] K. Eickmeyer, Martin Grohe, and Magdalena Grüber. Approx-
imation of natural w [p]-complete minimisation problems is
hard. In 23rd Annual IEEE Conference on Computational Com-
plexity, pages 8–18. IEEE, 2008.

[Göd93] Kurt Gödel. A letter to John von Neumann, March 20, 1956.
In P. Clote and J. Krajíček, editors, Arithmetic, Proof Theory,
and Computational Complexity, pages 7–9. Oxford University
Press, 1993.

[Iwa97] Kazuo Iwama. Complexity of finding short resolution proofs. In
Igor Prívara and Peter Ruzicka, editors,MFCS, volume 1295 of
Lecture Notes in Computer Science, pages 309–318. Springer,
1997.

[MMZ+01] M.W.Moskewicz, C.F.Madigan, Y. Zhao, L. Zhang, and S.Ma-
lik. Chaff: Engineering an efficient sat solver. In Proceedings
of the 38th annual Design Automation Conference, pages 530–
535. ACM, 2001.

6 Massimo Lauria — lauria.massimo@gmail.com

mailto:lauria.massimo@gmail.com

Introduction to proof complexity Lecture 1

[MSS99] João P Marques-Silva and Karem A Sakallah. Grasp: A search
algorithm for propositional satisfiability. Computers, IEEE
Transactions on, 48(5):506–521, 1999.

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bul-
letin of symbolic Logic, 13(4):482–537, 2007.

Massimo Lauria — lauria.massimo@gmail.com 7

mailto:lauria.massimo@gmail.com

	The length of proofs and computational complexity
	Simulations and relative strength
	Proof complexity and SAT solvers
	Resolution proof system
	Next lecture
	Further reading

