The Strength of Parameterized Tree-like Resolution

Olaf Beyersdorft™
Institut fiir Informatik, Humboldt-Universitdt zu Berlin, Germany
beyersdo@informatik.hu-berlin.de

Nicola Galesi

Massimo Lauria

Dipartimento di Informatica, Sapienza - Universita di Roma, Italy
{galesi,lauria}@di.uniromal.it

Abstract

We examine the proof-theoretic strength of parameter-
ized tree-like resolution—a proof system for the coW[2]-
complete set of parameterized tautologies. Parameterized
resolution and, moreover, a general framework for parame-
terized proof complexity was introduced by Dantchev, Mar-
tin, and Szeider (FOCS’07). In that paper, Dantchev et al.
show a complexity gap in parameterized tree-like resolution
for propositional formulas arising from translations of first-
order principles.

Here we pursue a purely combinatorial approach to ob-
tain lower bounds to the proof size in parameterized tree-
like resolution. For this we devise a prover-delayer game
suitable for parameterized resolution. By exhibiting good
delayer strategies we then show lower bounds for the pi-
geonhole principle as well as the order principle. On the
other hand, we demonstrate that parameterized tree-like
resolution is a very powerful system, as it allows short
refutations of all parameterized contradictions given as
bounded-width CNF’s. Thus, a number of principles such
as Tseitin tautologies, pebbling contradictions, or random
3-CNF'’s which serve as hard examples for classical resolu-
tion become easy in the parameterized setting.

1 Introduction

Proof complexity is a research field which owes one of its
main motivations from the problem of separating complex-
ity classes as P, NP, and coNP, using an approach which
integrates techniques and results from mathematical logic,
model theory, combinatorics, and computational complex-
ity. Cook and Reckhow [11] initiated the study of lengths
of proofs in propositional proof systems. Their result that

*This work was done while the first author was visiting Sapienza Uni-
versity of Rome. Research was supported by DFG grant KO 1053/5-2.

the existence of a polynomially bounded propositional proof
system, i.e., a proof system where all tautologies have
polynomial-size proofs, is equivalent to NP = coNP, has
opened the way to proving lower bounds for the lengths of
proofs in a diversity of propositional proof systems rang-
ing from restricted versions of resolution to bounded-depth
Frege systems (see [19] for a recent survey on the field).
While all these systems are known to be not polynomially
bounded, still a lot of effort has to be invested to reach, for
instance, super-polynomial lower bounds for Frege systems.

Parameterized complexity is a branch of complexity the-
ory where problems are analyzed in a finer way than in the
classical approach: instead of expressing the complexity of
aproblem as a function only of the input size, one parameter
is part of the input instance, and one investigates the effect
of the parameter on the complexity. We say that a problem
is fixed-parameter tractable with parameter k if it can be
solved in time f(k)n®™) for some computable function f
of arbitrary growth. In this setting, classically intractable
problems may have efficient solutions for small choices of
the parameter, even if the total size of the input is large. Pa-
rameterized complexity has a very well-developed and deep
theory and, as for the classical case, there are many open
problems concerning the separation of parameterized com-
plexity classes as FPT and W[P] (see [15,16] for a complete
treatment of the field).

Recently, Dantchev, Martin, and Szeider [12] introduced
and initiated the study of parameterized proof complexity.
After considering the notions of propositional parameter-
ized tautologies and fpt-bounded proof systems, they laid
the foundations to study complexity of proofs in a param-
eterized setting. The main motivation behind their work
was that of generalizing the classical approach of Cook and
Reckhow to the parameterized case and working towards a
separation of parameterized complexity classes as FPT and
WIP] by techniques developed in proof complexity.

Tree-like resolution is a well-known propositional proof

system where proofs are in form of trees. It is one of the
most intensively investigated proof systems both from a
proof-theoretic point of view ([4, 7-9] among many oth-
ers) and from an applied perspective, given its importance in
the study of algorithms for the satisfiability problem [5,20].
Dantcheyv et al. [12] study the complexity of parameterized
proofs starting from the parameterized version of tree-like
resolution. They prove an extension of Riis’ gap theorem
for tree-like resolution [18], getting a separation for the
complexity of parameterized resolution proofs for formulas
arising from propositional encodings of first-order princi-
ples P, that uniquely depends on P having or not infinite
models.

In this work we continue the study of the complexity of
proofs in parameterized tree-like resolution. As our main
contribution (Section 3) we devise a purely combinatorial
approach, based on a prover-delayer game, to characterize
proof size in parameterized tree-like resolution. In partic-
ular, we use our characterization to prove lower bounds.
Our game is inspired by the prover-delayer game of Pudlak
and Impagliazzo [17], which is one of the canonical tools to
study lower bounds in tree-like resolution [7, 17] and tree-
like Res(k) [13]. In fact, we show that the game from [17]
is a very simple case of our game.

Using this game, lower bounds to the proof size in pa-
rameterized tree-like resolution immediately follow from
good strategies for the delayer. We provide such strategies
for the case of the pigeonhole principle (Theorem 3.2) and
for the case of a (partial) ordering principle (Theorem 5.2).
Moreover, our game makes explicit a connection between
complexity and information content of parameterized tree-
like resolution proofs, which may be of independent interest
and suggest new connections to study the length of proofs.

But what is the real proof strength of parameterized tree-
like resolution? Is it similar to that of tree-like resolution?
Dantchev et al. indicated that this is not the case. They
proved that a propositional encoding of the first-order for-
mulation of the linear ordering principle has short tree-like
proofs in parameterized resolution, whereas this principle is
hard for usual tree-like resolution [10].

We further investigate classes of parameterized contra-
dictions that are efficiently provable in tree-like resolution,
obtaining surprising results. The notion of efficient ker-
nelization (see [15]) of languages plays an important role
in the theory of parameterized complexity to design fpt-
algorithms. Here we propose a notion of kernel for param-
eterized proof complexity. We observe that if a formula has
a kernel, then it can be efficiently proved in parameterized
tree-like resolution. As an immediate consequence several
examples of formulas hard for tree-like resolution are in-
stead efficiently provable in the parameterized case: peb-
bling contradictions, linear ordering principles, graph pi-
geonhole principles, and colorability principles. But some-

times a kernel of a formula is not explicit or immediate
to find. In Theorem 4.2 we prove that contradictions of
bounded width have a kernel and thus very efficient tree-
like resolution proofs. This implies that formulas known to
be hard for systems even stronger than (dag-like) resolution
like Tseitin tautologies and random 3-CNF’s are efficiently
provable in parameterized tree-like resolution.

The paper is organized as follows. Section 2 contains
all preliminary notions and definitions concerning fixed-
parameter tractability, parameterized proof systems, and pa-
rameterized resolution. In Section 3 we define our prover-
delayer game and establish its precise relation to proof size
in parameterized tree-like resolution. We also show the
lower bound for the pigeonhole principle. Section 4 con-
centrates on upper bounds: we introduce the notion of a
kernel and prove that parameterized contradictions with ker-
nels and of bounded width have efficient tree-like refuta-
tions. Section 5 is devoted to the analysis of different order-
ing principles. We prove that a formulation of linear order-
ing without a kernel still has efficient tree-like refutations
and, using the prover-delayer game, we obtain hardness of a
(partial) ordering principle for parameterized tree-like reso-
lution (Theorem 5.2). Finally, in Section 6 we introduce the
concept of automatizability in the context of parameterized
proof systems and discuss several open problems. Due to
space limitations some proofs are moved to the appendix.

2 Preliminaries
2.1 Fixed-Parameter Tractability

A parameterized language is a language L C ¥* x N.
For an instance (z, k), we call k the parameter of (z, k).
A parameterized language L is fixed-parameter tractable if
L has a deterministic decision algorithm running in time
f(E)|z|°™) for some computable function f. The class of
all fixed-parameter tractable languages is denoted by FPT.

Besides FPT there is a wealth of complexity classes
containing problems which are not believed to be fixed-
parameter tractable. The most prominent classes lie in the
weft hierarchy forming a chain

FPT CW[1] CW][2] C--- C W[P] C para-NP .

The classes of the weft hierarchy are usually defined as the
closure of a canonical problem under fpt-reductions. For
W(2] this canonical problem is weighted CNF satisfiability
containing instances (F, k) with a propositional formula F
in CNF and a parameter & € N. Weighted CNF satisfiability
asks whether F has a satisfying assignment of weight £,
where the weight of an assignment v, denoted w(«), is the
number of variables that « assigns to 1. Instead of asking
for an assignment « with w(«) = k we can also ask for

a with w(a) < k and still get a W[2]-complete problem
(cf. [12]). Like in the classical duality between tautologies
and satisfiability, we obtain a complete problem for coW|[2]:

Definition 2.1 (Dantchev, Martin, Szeider [12]). A parame-
terized contradiction is a pair (F, k) consisting of a propo-
sitional formula F' and k € N such that F' has no satisfying
assignment of weight < k. We denote the set of all parame-
terized contradictions by PCon.

For an in-depth treatment of notions from parameterized
complexity we refer to the monographs [15, 16].

2.2 Parameterized Proof Systems

We start with the general definition of a parameterized
proof system of Dantchev, Martin, and Szeider [12].

Definition 2.2 (Dantchev, Martin, Szeider [12]). A param-
eterized proof system for a parameterized language L C
¥* x Nis a function P : ¥* x N — ¥* x N such
that rng(P) = L and P(x,k) can be computed in time
O(f(k)|2|°M)) with some computable function f.

In this definition, there are two parameters: one stem-
ming from the parameterized language, but there is also a
parameter in the proof. Verification of proofs then proceeds
in ftp-time in the proof parameter. We contrast this with the
classical concept of Cook and Reckhow where proofs are
verified in polynomial time:

Definition 2.3 (Cook, Reckhow [11]). A proof system for a
language L C X is a polynomial-time computable function
P :¥* — X* with rng(P) = L.

This framework can also be applied to parameterized
languages L C ¥* x N. Thus, in contrast to the param-
eterized proof systems from Definition 2.2, we say that a
proof system for the parameterized language L is just a
polynomial-time computable function P : ¥* — ¥* x N
with rng(P) = L. The difference to Definition 2.2 is that
proofs are now verified in polynomial time. We will argue
in Theorem 2.7 that this weaker and simpler notion is in
fact equivalent to the notion of parameterized proof systems
from Definition 2.2 when considering lengths of proofs.

For lengths of proofs it is appropriate to adjust the no-
tion of short proofs to the parameterized setting. This was
formalized by Dantchev, Martin, and Szeider as follows:

Definition 2.4 (Dantchev, Martin, Szeider [12]). A param-
eterized proof system P for a parameterized language L
is fpt-bounded if there exist computable functions f and
g such that every (xz,k) € L has a P-proof (y,k') with
ly| < f(E&)|z|°M) and k' < g(k).

Again, if we use polynomial-time computable proof sys-
tems for parameterized languages, this definition simplifies
a bit as follows:

Definition 2.5. A proof system P for a parameterized lan-
guage L is fpt-bounded if there exists a computable function
f such that every (x,k) € L has a P-proof of size at most
F (k)20

We now want to determine which languages admit ftp-
bounded proof systems. Recall that by the theorem of Cook
and Reckhow [11], the class of all languages with polyno-
mially bounded proof systems coincides with NP. To obtain
a similar result in the parameterized world, we use the fol-
lowing parameterized version of NP.

Definition 2.6 (Flum, Grohe [14]). The class para-NP con-
tains all parameterized languages which can be decided by
a nondeterministic Turing machine in time f(k)|z|°M for
some computable function f.

The following result is a direct analogue of the classical
theorem of Cook and Reckhow [11] for the parameterized
setting. Moreover, it shows the equivalence of our two no-
tions for proof systems for parameterized languages with
respect to the existence of fpt-bounded systems.

Theorem 2.7. Let . C ¥* X N be a parameterized lan-
guage. Then the following statements are equivalent:

1. There exists an fpt-bounded proof system for L.

2. There exists an fpt-bounded parameterized proof sys-
tem for L.

3. L € para-NP.

As in items 1 and 2 of Theorem 2.7, the two concepts
of proof systems for parameterized languages also turn out
to be equivalent with respect to other notions, for instance
when defining parameterized simulations or considering the
existence of optimal proof systems.

2.3 Parameterized Resolution

A literal is a positive or negated propositional variable
and a clause is a set of literals. A clause is interpreted as
the disjunctions of its literals and a set of clauses as the
conjunction of the clauses. Hence clause sets correspond
to formulas in CNF. The resolution system is a refutation
system for the set of all unsatisfiable CNF. Resolution uses
as its only rule the resolution rule

{z}uC {-2}uUD

cubD

for clauses C, D and a variable x. The aim in resolution
is to demonstrate unsatisfiability of a clause set by deriving
the empty clause. If in a derivation every derived clause is
used at most once as a prerequisite of the resolution rule,

then the derivation is called tree-like, otherwise it is dag-
like. The size of a resolution proof is the number of its
clauses. Undoubtedly, resolution is the most studied and
best-understood propositional proof system (cf. [19]).

For the remaining part of this paper we will concentrate
on parameterized resolution as introduced by Dantchev,
Martin, and Szeider [12]. Parameterized resolution is a
refutation system for the set PCon of parameterized con-
tradictions (cf. Definition 2.1). Given a set of clauses F' in
variables z1, . .., x, with (F, k) € PCon, a parameterized
resolution refutation of (F, k) is a resolution refutation of

FU{"(EZ'I \/"'\/_‘{Eik_*_l | 1< <"'<ik+1 Sn} .
Thus, in parameterized resolution we have built-in access to
all parameterized clauses of the form —x;, V ---V =y, .
All these clauses are available in the system, but when mea-
suring the size of a derivation we only count those which
appear in the derivation. Note that parameterized resolu-
tion is actually a proof system where verification proceeds
in polynomial time.

As before, if refutations are tree-like we speak of pa-
rameterized tree-like resolution. As explained in [12], a pa-
rameterized tree-like refutation of (F), k) can equivalently
be described as a boolean decision tree. A boolean decision
tree for (F, k) is a binary tree where inner nodes are labeled
with variables from F' and leafs are labeled with clauses
from F' or parameterized clauses —x;, V- - -V —x;, . Each
path in the tree corresponds to a partial assignment where a
variable x gets value 0 or 1 according to whether the path
branches left or right at the node labeled with z. The con-
dition on the decision tree is that each path a must lead to
a clause which is falsified by the assignment corresponding
to . Therefore, a boolean decision tree solves the search
problem for (F, k) which, given an assignment «, asks for
a clause falsified by «. It is easy to verify that each pa-
rameterized tree-like resolution refutation of (F, k) yields a
boolean decision tree for (F, k) and vice versa, where the
size of the resolution proof equals the number of nodes in
the decision tree.

3 Lower Bounds via a Prover-Delayer Game

Let (F, k) € PCon where F'is a set of clauses in n vari-
ables x1,...,x,. We define a prover-delayer game: prover
and delayer build a (partial) assignment to x1,...,x,. The
game is over as soon as the partial assignment falsifies ei-
ther a clause from F' or a parameterized clause —z;, V-V
—T;,,, where 1 <47 < -+ < igy1 < n. The game pro-
ceeds in rounds. In each round, prover suggests a variable
x;, and delayer either chooses a value O or 1 for x; or leaves
the choice to the prover. In this last case, if the prover sets
the value, then the delayer gets some points. The number

of points delayer earns depends on the variable x;, the as-
signment « constructed so far in the game, and two func-
tions co(x;,) and ¢ (x4,). More precisely, the number
of points that delayer will get is

0 if delayer chooses the value,
log co(x;,) if prover sets x; to 0, and
log ¢ (x;,) if prover sets x; to 1.
Moreover, the functions cq(z,) and ¢; (x, «) are chosen in
such a way that for each variable x and assignment «
1 1
co(z, @)

=1 1
(. a) .
holds. Let us call this game the (cg, ¢1)-game on (F' k).
The connection of this game to size of proofs in parame-
terized tree-like resolution is given by the next theorem:

Theorem 3.1. Let (F, k) be a parameterized contradiction
and let cy and ¢y be two functions satisfying (1) for all par-
tial assignments « to the variables of F. If (F, k) has a tree-
like parameterized resolution refutation of size at most S,
then the delayer gets at most log S points in each (co, c1)-
game played on (F, k).

Proof. Let (F, k) be a parameterized contradiction in vari-
ables x1, ..., x, and let II be a parameterized tree-like res-
olution refutation of (F, k). Assume now that prover and
delayer play a game on (F, k) where they successively con-
struct an assignment «. Let «; be the partial assignment
constructed after ¢ rounds of the game, i.e., a; assigns ¢
variables a value 0 or 1. By p; we denote the number of
points that delayer has earned after 7 rounds, and by II,,, we
denote the sub-tree of the decision tree of II which has as its
root the node reached in II along the path specified by «;.

We use induction on the number of rounds ¢ in the game
to prove the following claim:

_Im

- 9pi

To see that the theorem follows from this claim, let & be an
assignment constructed during the game yielding p,, points
to the delayer. As a contradiction has been reached in the
game, the size of II, is 1, and therefore by the inductive
claim

Moy,

_m

17217(1

b

yielding p,, < log |II| as desired.

In the beginning of the game, II,,, is the full tree and the
delayer has 0 points. Therefore the claim holds.

For the inductive step, assume that the claim holds after 4
rounds and prover asks for a value of the variable x in round
1 + 1. If the delayer chooses the value, then p;;; = p; and
hence
m

|Hai+1‘ < ‘Hoéi = 9pi 9pit1

If the delayer defers the choice to the prover, then the prover
uses the following strategy to set the value of z. Let =0 be
the assignment extending «; by setting z to 0, and let a#=!
be the assignment extending «; by setting = to 1. Now,
prover sets « = 0 if [IL,z=0| < mma , otherwise he
c1 (rl,ozi)
if prover sets « = 1, then [[T,z=1] < Wla)‘na |. Thus, if
provers choice is = j with j € {0, 1}, then we get

sets z = 1. Because —1— + = 1, we know that
o(z,00)

Mo, ||
|H0£i+1| = |Ha?:j‘ S] N =])
i cj(x, ;) ~ cj(z, 0q)2P
_ | _
opitloge;(z,a;) ~ 9pit1
This completes the proof of the induction. O

Notice that for setting co(z,) = c¢1(x,) = 2 for all
variables = and partial assignments o, we get the game of
Pudldk and Impagliazzo [17]. Suitably choosing functions
¢o and ¢; and defining a delayer-strategy for the (co, c1)-
game we can prove a lower bound to the proof size in tree-
like parameterized resolution. We will illustrate this for
the pigeonhole principle PHPQJrl which uses variables z; ;
with ¢ € [n+ 1] and j € [n], indicating that pigeon 7 goes
into hole j. PHP”" consists of the clauses

\/ x;; forall pigeonsi € [n+ 1] and -z, ; V x4,
jeln]

for all choices of distinct pigeons i1, i2 € [n + 1] and holes
j € [n]. We prove that PHP" ! is hard for parameterized
tree-like resolution.

Theorem 3.2. PHPZJrl has no fpt-size parameterized tree-
like resolution refutation.

Proof. Let « be a partial assignment to the variables {z; ; |
i € [n+1],j € [n]}. Letz(a) = |{j € [n] | alzi) = 0},
i.e., z;(«) is the number of holes already excluded by « for
pigeon i. We define

n — z;(a)

co(zij,a) = and ¢ (255,) = n—zi(a)

n—z(a)—1
which apparently satisfies (1). We now describe delayer’s
strategy in a (co, ¢;)-game on (PHP™ ! k). If prover asks
for a value of x; ;, then delayer decides as follows:

if there exists i’ € [n+ 1]\ {i}

such that o(x; ;) = 1 or if there exists
j" € [n]\ {j} such that a(z; ;) =1

if there is no j' € [n] with a(; ;) =1
and |z; ()] > n—k

otherwise.

set Oé(l‘i)j) =0

set a(x; ;) =1

let prover decide

Intuitively, delayer leaves the choice to prover as long as pi-
geon ¢ does not already sit in a hole, but there are at least k

holes free for pigeon ¢, and there is no other pigeon sitting
already in hole j. If delayer uses this strategy, then clauses
from PHPZJrl will not be violated in the game, i.e., a con-
tradiction will always be reached on some parameterized
clause. To verify this claim, let « be a partial assignment
constructed during the game with w(«) < k. Then, for ev-
ery pigeon which has not been assigned a hole yet, there are
at least k holes where it could go (and of these only w(«)
holes are occupied by other pigeons). Thus « can be ex-
tended to a one-one mapping of exactly k pigeons to holes.

Therefore, at the end of the game exactly k£ + 1 vari-
ables have been set to 1. Let us denote by p the number of
variables set to 1 by prover and let d be the number of 1’s
assigned by delayer. As argued before p +d = k + 1. Let
us check how many points delayer earns in this game. If
delayer assigns 1 to a variable x; ;, then pigeon i was not
assigned to a hole yet and, moreover, there must be n — k
holes which are already excluded for pigeon 7 by ¢, i.e., for
some J C [n] with |J| = n — k we have a(z; ;) = 0 for
all 7/ € J. Most of these 0’s have been assigned by prover,
as delayer has only assigned a 0 to x; ; when some other
pigeon was already sitting in hole j’, and there can be at
most k such holes. Thus, before delayer sets a(p; ;) = 1,
she has already earned points for at least n — 2k variables
x;,4, j' € J, yielding at least

n—2k—1 n—2k—1
n—=z n—=z
S oog "TE =g [A
n—z—1 n—z—1
z=0 z=0

n
= logﬂ = logn — log 2k

points for the delayer. Let us note that because delayer never
allows a pigeon to go into more than one hole, she will re-
ally get the number of points calculated above for every of
the d variables which she set to 1.

If, conversely, prover sets variable x; ; to 1, then delayer
gets log(n — z;(«)) points for this, but she also received
points for most of the z;(«) variables set to 0 before. Thus,
in this case delayer earns on pigeon ¢ at least

zi(a)—k—1
n—z
1 — 2z log————
oB(n—ze) + 3 ol
n
— k
— lognflog%
n— z(a)

> logn —logk
points. In total, delayer gets at least
d(logn —log 2k) + p(logn — log k) > k(logn — log 2k)
points in the game. Applying Theorem 3.1, we obtain (45)*

as a lower bound to the size of each parameterized tree-like
resolution refutation of (PHP™ 1! k). O

By inspection of the above delayer strategy it becomes
clear that the lower bound from Theorem 3.2 also holds for
the functional pigeonhole principle where in addition to the
clauses from PHPZJr1 we also include —z; 5, V —x; 4, for
all pigeons ¢ € [n + 1] and distinct holes j1, j2 € [n].

4 Kernels and Small Refutations

The notion of efficient kernelization plays an important
role in the theory of parameterized complexity. A kernel-
ization for a parameterized language L is a polynomial-time
procedure A : ¥* x N — ¥* x N such that for each (z, k)

1. (z,k) € Lifandonly if A(z,k) € L and

2. if A(z, k) = (2, k'), then k' < k and |2/| < f(k) for
some computable function f independent of |x|.

It is clear that if a parameterized language admits a kernel-
ization, then the language is fixed-parameter tractable, but
also the converse is true (cf. [15]). For parameterized proof
complexity we suggest a similar notion of a kernel:

Definition 4.1. A set I' C PCon of parameterized contra-
dictions has a kernel if there exists a computable function f
such that every (F, k) € T has a subset F' C F of clauses
satisfying the following conditions:

1. F' contains at most f (k) variables and
2. (F',k) is a parameterized contradiction.

Note that a sequence of parameterized contradictions
with a kernel of size f (k) admits fpt-bounded tree-like reso-
lution refutations of size at most 2/ (*). Nevertheless, there
are CNF’s without a kernel, but with fpt-bounded refuta-
tions, for example (z1VzaV- - -V,) AT AToA- - ATy,

We now give some examples of CNF’s with kernels:

Pebbling contradictions. Fix a constant [and an acyclic
connected directed graph G of constant in-degree with a sin-
gle sink vertex z. For any vertex v in G, let Pred(v) be the
set of immediate predecessors of v. For any v we use the
propositional variables z7,...,z;. The pebbling contra-
diction consists of the conjunction of the constraints

/\ (z¥ V...va})

u€ Pred(v)

—z]V...Vay

for any v € V(G) and constraints —z5, ~z3, ..., ~a}. This
means that for any source vertex s (which has an empty set
of predecessors) one of the variables x} is true. By induc-
tion this holds for every vertex in G, in particular also for
the sink z contradicting the last [clauses. For constant [and
constant in-degree, the pebbling formula can be encoded as
a CNF of polynomial size in the number of vertices of G.

To see that the pebbling contradictions have a kernel,
consider the first £ + 1 vertices in a topological ordering of
V(@). The corresponding propagation formulas form a pa-
rameterized contradiction, because these formulas enforce
k + 1 true variables. For graphs of constant in-degree, these
formulas have O(1) variables each, so their CNF encoding
has size O(k) and constitutes a kernel. This is remarkable,
because forms of pebbling tautologies are hard for tree-like
resolution in the non-parameterized setting [7].

Colorability. Fix a constant ¢ and a graph G which is
not c-colorable. The c-coloring contradiction is defined on
variables p,, ; where u is a vertex of G and j is one of the
c colors. The CNF claims that G is c-colorable: (1) for
any vertex u we have the clause \/, ;. pu,; claiming that
the vertex u gets a color; (2) for any edge {u,v} in G and
any color j, the clause —p,, ; V —p,,; claims that no pair of
adjacent vertices gets the same color.

It is easy to see that the clauses of type (1) corresponding
to any k + 1 vertices form a kernel and thus have a short
refutation. This contrasts with the fact that for random G
and ¢ > 3 this formula is hard in resolution [3].

Graph pigeonhole principle. Fix G to be a bounded-
degree bipartite graph, with the set of vertices partitioned
into two sets U, V of n + 1 pigeons and n holes. PHP(G)
is a variant of the pigeonhole principle where a pigeon can
go only into a small set of holes as specified by the edges of
G. If G is an expander these principles are hard for general
resolution [8]. PHP(G) consists of the following clauses:
(1) for u € U we have \/vef(u) Puws (2) forany v € V and
any w1, ug € I'(v) we have the clause =y, o V "Dy, 0. Itis
clear that & + 1 clauses of type (1) constitute a kernel.

Ordering principles. In Section 5 we will give different
formulations of the total ordering principle. We will see that
the propositional translations of the first-order formulation
given in [12] have easy refutations (as observed in [12]) be-
cause of the presence of a kernel. We emphasize that the
same ordering principle requires exponential-size tree-like
resolution refutations in the non-parameterized setting [10].

Bounded-width CNF. The kernels in the previous ex-
amples are very explicit, but this is not always the case. Is
it easy to find a kernel if it is known to exist? The answer to
this question has consequences regarding automatizability
of tree-like parameterized resolution. We see now a general
strategy for finding kernels and fpt-bounded refutations for
parameterized contradictions of bounded width.

Theorem 4.2. If F' is a CNF of width w and (F, k) is a pa-
rameterized contradiction, then (F, k) has a parameterized
tree-like resolution refutation of size O(w**'). Moreover,
there is an algorithm that for any (F, k) either finds such
tree-like refutation or finds a satisfying assignment for F' of
weight < k. The algorithm runs in time O(|F| - k - w**1).

Proof. Assume (F, k) is a parameterized contradiction. We
want to find a refutation for F' with parameter k£ (i.e., at
most k variables can be set to true). We first consider a
clause C' = x1 Va2 V...V x; where | < w with all positive
literals. Such clause exists because otherwise the full zero
assignment would satisfy F'.

By induction on k we will prove that (F, k) has a param-
eterized tree-like refutation of size at most 2 - ZkH 1.
For k = 0 the clauses {—x;}._, are parameterized ax-
ioms of the system, thus C' is refutable in size at most
1420 <14 2w.

Let now k > 0. For any 1 < ¢ <, let F; be the restric-
tion of F' obtained by setting x; = 1. Each (F;,k — 1) is
a parameterized contradiction, otherwise (F, k) would not
be. By inductive hypothesis (F;, k — 1) has a tree-like refu-
tation of size at most s = 2 Zf:o w® — 1. This refutation
can be turned into a tree-like derivation of —x; from (F, k).
Now we can derive all —x; for 1 < ¢ < [and refute clause
C'. Such refutation haslength 1 +1+1ls <14+ w+ws =

k+1
2.y yw

By 1nspect10n of the proof, it is clear that the refutation
can be computed by a simple procedure which at each step
looks for a clause C' with only positive literals, and builds
a refutation of (F, k) recursively by: building ! refutations
of (F;, k — 1); turning them in [derivations (F, k) F —x;;
and resolving against C'. This procedure can be easily im-
plemented in the claimed running time.

So far we considered (F, k) to be a parameterized con-
tradiction. If that is not the case, then the algorithm fails. It
can fail in two ways: (a) it does not find a clause with only
positive literals; (b) one among (F};, k — 1) is not a param-
eterized contradiction. The algorithm will output the full
zero assignment in case (a) and {z; = 1} U « in case (b),
where « is an assignment witnessing (F;, k — 1) ¢ PCon.
By induction we can show that on input (F k) this proce-
dure returns a satisfying assignment of weight < k. O

We state two interesting consequences of this result.

Corollary 4.3. For each w € N, the set of all parameter-
ized contradictions in w-CNF has a kernel.

Proof. The refutations constructed in Theorem 4.2 contain
O(w") initial clauses in O(w**1) variables. These clauses
form a kernel. O

The following corollary expresses some restricted form
of automatizability (cf. also the discussion in Section 6).

Corollary 4.4. IfT" C PCon has a kernel, then there exists
an fpt-algorithm which on input (F, k) € T returns both a
kernel and a refutation of (F, k).

Proof. Let I" have a kernel of size f(k). Then the kernel
only contains clauses of width < f(k). On input (F, k)

we run the algorithm of Theorem 4.2 on all clauses of F’
with width < f(k). This yields a kernel together with its
refutation. O

Tseitin tautologies. Fix a bipartite graph G = (L, R, E)
such that the degree of the vertices on the left side is con-
stant and the degree of all vertices on the right side is even.
Fix now an arbitrary boolean function f : L — {0, 1} such
that 3 ., f(u) = 1 (mod 2). The Tseitin tautology for
(G, f) claims that there is no way to define g : R — {0, 1}
sucfh that for any u € L,. Z,Uer(u)‘g(v) = f(u) (mod 2).
This fact follows by a simple parity argument. The CNF
formulation of this claim uses variables z, for v € R.
The CNF is constituted by the encoding of the constraints
> ver(u) Tv = f(u) (mod 2) for every u € L. Each lin-
ear constraint requires exponential size to be represented in
CNEF, but this is not an issue here because left-side vertices
have constant degree. Hence Tseitin formulas have bounded
width. By Theorem 4.2 they have a kernel, but in contrast
to our previous examples this kernel is not very explicit.

S Ordering Principles

In this section we discuss parameterized resolution refu-
tations for various ordering principles OP, also called least
element principles. The principle claims that any finite par-
tially ordered set has a minimal element. There is a direct
propositional translation of OP to a family OP,, of CNF’s.
Each CNF OP,, expresses that there exists a partially or-
dered set of size n such that any element has a predecessor.
We are also interested in the linear ordering principle LOP
in which the set is required to be torally ordered.

Dantchev, Martin, and Szeider [12] show that a proposi-
tional formulation of LOP has small refutations in param-
eterized tree-like resolution. They also show that such ef-
ficient refutation does not exists for OP. We observe that
their formulation of LOP has short proofs because it con-
tains very simple kernels. We describe LOP™, an alterna-
tive formulation of the linear ordering principle which does
not contain a kernel but nevertheless has (less trivial) fpt-
bounded tree-like refutations.

We now describe the three propositional formulations of
the ordering principles. For a model with n elements, OP,,,
LOP,, and LOP;, are three CNF’s over variables x; ; for

i# jandi,j € [n].
OP: the general ordering principle has the following
clauses:

;5 VX for every ¢, j (Antisymmetry)

-V Xy Vg, foreveryd,j, k (Transitivity)

Voo

Jeln\{i}

for every ¢ (Predecessor)

LOP: is the same as OP with the addition of totality
constraints:

i VT for every ¢, j (Totality)

LOP*: is a different encoding of LOP where we con-
sider only variables x; ; for ¢ < j. The intended mean-
ing is that x; ; is true whenever j precedes ¢ in the or-
dering, and false if 7 precedes j. The reader may think
x; ; to indicate if ¢ and j are an inversion in the permuta-
tion for the indexes described by the total order. In par-
ticular the full true assignment represents the linear order
(n,n —1,n —2,...,2,1) while the full false assignment
represents (1,2,...,n — 2,n — 1,n). This representation
will help in the proof of Theorem 5.1.

LOP;}, is obtained by substituting in LOP,, any occur-
rence of ;; for j > 4 with —x; ;. In this way all totality
and antisymmetry clauses vanish, and transitivity translates
according to relative ranks of the involved indexes.

forall? < j < k (Transitivity 1)
forallt < j < k (Transitivity 2)

i V TGk V Tk
Tij VTV Tk

\/ R V \/ T j

J<i 1<j

for all ¢ (Predecessor)

Both OP and LOP are the canonical propositional trans-
lations of the first-order formulations of the general and to-
tal ordering principle, respectively. In [12] the upper bound
for LOP and the lower bound for OP are proved by model-
theoretic criteria on the first-order logic formulations.

We remark that in the non-parameterized setting, neither
OP, LOP, nor LOP™ have short tree-like resolution refu-
tations [10], but all of them have general resolution refuta-
tions of polynomial size [21]. It is interesting that in the pa-
rameterized setting LOP and LOP* become easy for tree-
like, while OP remains hard. Thus, OP provides a sepa-
ration between tree-like and dag-like parameterized resolu-
tion.

It is easy to see that LOP has short tree-like refutations
in parameterized resolution: notice that the totality clauses
for any k + 1 pairs of indexes form a parameterized con-
tradiction of 2k + 2 variables at most, and so they are a
kernel. Unfortunately, LOP is easy to refute for uninterest-
ing reasons: the kernel is very simple. The alternative for-
mulation LOP™ does not have a kernel because all clauses
of bounded width are satisfiable by the all zero assignment
which represents a total order. Nevertheless LOP* admits
fpt-bounded tree-like refutations.

Theorem 5.1. The formulas LOP), have fpt-bounded tree-
like refutations in parameterized resolution.

Proof. Let (LOP} k) be the given instance and assume
w.l.0.g. that k < n. We are going to derive LOP, | from

LOP;, in polynomial length. This concludes the proof of
the theorem because LOPj, , has O(k?) variables and con-

sequently has a tree-like refutation of length 2k?,

The idea of the refutation is that for any total order either
the least element is among 1, . . ., k+1 or there is an element
less than all of them. This means that there are at least k+ 1
inversions with respect to the canonical order (i.e., k + 1
variables are set to 1). To obtain LOP}, , ; we have to derive

V o—eav o ag

1<j<i i<j<k+1

forany 1 < ¢ < k+ 1. W.lLo.g. we discuss the case
i = 1 which requires simpler notation, the other k cases are
analogous.

Our target then is to derive V1<j§k-+1 x1,5. For any [>
k+ 1 consider the following clauses: the first is an axiom of
parameterized resolution, the others are transitivity axioms.

Sr1g VX VooV gy 2)
T12V Tog V Ty 3)

13V T3V Ty “4)

T ht1 V Tpg1, V0T (5)

By applying resolution between clause (2) and the transitiv-
ity clauses we obtain

12Vx13V...VT 41 VT (6)

We just proved that if 1 is the least index among the first
k + 1, then no index above k£ + 1 can be less than 1, oth-
erwise there would be at least k + 1 true variables. The
predecessor constraint for 1 contains the literal xy ; for ev-
ery [; thus applying resolution between that and clause (6)
forevery I >k + Lyields \/; 44y 1,5

We obtained the predecessor axiom for index 1 in
LOP;. | by a derivation of size O(kn). With k 4 1 such
deductions we obtain LOP}, ;. As the whole refutation of

LOP? has length O(k2n) + O(2%°), it is fpt-bounded. [J

The following theorem has been first proved in [12].
Their proof is based on a model-theoretic criterion. We give
a combinatorial proof based on prover-delayer games.

Theorem 5.2. OP has no fpt-bounded tree-like parameter-
ized resolution refutations.

Proof. Let a be an assignment to the variables of OP. The
delayer will keep the following information:

e G(a) = (V(a), E(a)) the graph obtained taking as
edges the (4, j)’s such that o(z; ;) = 1;

e G*(«) the transitive closure of G(a) and GT () the
transpose graph of G(a).

In particular, for any vertex j in G(«), the delayer considers
the following information

o zj(a) = [{i € [n] | a(x;,5) is not assigned}|,
e Pred;j(a) ={i € [n]| a(z;;) =1}, and

e PPred;(c) the subset of Pred;(c) of those edges set
to 1 by the prover .

Loosely speaking the delayer, taking as few decisions as
possible, wants to force: (1) the game to end on a param-
eterized clause, and (2) the prover to decide only one pre-
decessor for each node. To reach the former, in some cases
she will be forced to decide a predecessor of a node j to
avoid that after few more trivial queries the game ends on a
predecessor clause. To get (2) she will be forced to say that
some node can’t be predecessor of some node j. In both
cases we will prove that delayer will keep her number of
decisions bounded.

Let o be the assignment built so far in the game and let
x; ; be the variable queried by prover. Delayer acts as fol-
lows:

—

. if (i,5) € E(a)*, then answer 1;

[\

. if (i,7) € (E(a)*)T, then answer 0;

et

if |Pred ()] = 0 and z; () < k + 1, then answer 1;

B

if |[PPred;(a)| > 1, then answer 0;
5. otherwise, she leaves the decision to the prover.

To simplify the argument we assume that in the game, af-
ter each decision of the prover or after a decision of the de-
layer by Rule (3), the prover asks all variables correspond-
ing to edges that are in G*(a) and (G(«)*)T but not in
G(«). This will not change our result since on these nodes
delayer does not score any point.

Let P<(¢) be the set of edges set to € € {0,1} by the
prover after stage ¢ ends. Let D¢(¢) be the set of edges set to
¢ € {0, 1} by the delayer. Finally, let D*(t) C D'(t) be the
set of edges set to 1 by the delayer according to Rule (3) of
her strategy. Ps(t), D5(t), and Dj(t) are the subsets of the
respective sets formed by those edges having end-node j,
i.e., edges of the form (i, j) for some .

Let o; be the assignment built after stage ¢ and let o be
the extensions of «; obtained by assigning all edges from
G*(ay) to 1 and all edges from (G(a;)*)” to 0. We define

N;(t) ={(i,j) | i € [n], (i,j) € dom(a7) \ P°(t) }.
Lemma 5.3. At each stage t of the game, it holds:
L |PYt)| + [D*(t)] = /I E(au)l;
2. if|le(t)| + D5 (t)] = 0, then |N;(t)| < k;

3. ifw(ay) < k, then o does not falsify any predecessor
clause;

4. foreach j € [n], |D}(t)| < 1and |P} ()] < 1.

Proof. Condition (1) follows since |P(t)| + |D(t)| =
|B(ar)], and | Eae)| < [E*(az)| < ([PL(#)] + [D*(1)])2.

Condition (2): |P}(t)| + |Dj(t)| = 0 implies that the
vertex j has no predecessor. The only way to set a prede-
cessor to a vertex which already has one is by Rule (1), but
a vertex without predecessors cannot get one by transitive
closure. Then an edge z; ; is in dom(aj) \ P°(¢) if and
only if 7 is a successor of j in G*(a:). Hence there must be
a directed tree rooted in j and containing all such succes-
sors. As G((a;)T contains at most k edges, there are at most
k successors of j. Hence |N;(t)| < k.

Condition (3): consider a predecessor clause C; which
is not satisfied by o;. Then there are at least k + 1 variables
x; j unset, since otherwise, according to Rule (3) delayer
should have set one predecessor for j. If |[P1(¢)| > 1, then
C; would be satisfied. Then by [P (¢)| + |D*(t)| = 0 and
by condition (2) at most k£ additional literals of C'; are set to
0 by ;. The claim follows.

Condition (4): the first time that a predecessor of some
node j is decided in the game is either by a decision of the
prover or by a decision of the delayer according to Rule (3).
Since delayer applies Rule (3) only in the case no predeces-
sor has been yet decided, it follows that | D (¢)| < 1. More-
over, by Rule (4) delayer prevents the prover to set more
than one predecessor for each node, hence \le <1 O

Lemma 5.4. After the last stage f of the game the following
holds:

e a parameterized clause is falsified;

o |[PYAOI+ID*(f)] > VE+1 O

Set ¢1(z; ;,) = zj() and co(z; 5,) = Zzgé;lll For

a given play of the game, let ¢; ; be the stage of the game
when the variable z; ; is set. Let sc;(t) be the number of
points scored by the delayer up to stage ¢ for answers of
the prover to the variables =1 ;, %2 ,...,%, ;. Then the
number of points scored by the delayer at the end of the
gameis 37, sc;(f).

Lemma 5.5.

L If [P} (f)| = 1, then sc;(f) > logn — log(k + 1).

2. If|D3(f)| = 1, then sc;(f) > logn—log(2k+1). O

The delayer scores ', sc;(f). By Lemma 5.4 there
are at least vk + 1 vertices such that either [D}(f)[> 1
or |Pj1(f)| > 1. For each vertex such events are mutually
exclusive by the definition of the rules. Then by Lemma 5.5
delayer gets at least vk + 1(logn — log(2k + 1)) points.
By Theorem 3.1 we get the lower bound. O

6 Open problems

This paper leaves some questions open to further inquiry.
We discuss two of them we consider worth the attention of
the community.

Automatizability of parameterized resolution. It is
known that in the non-parameterized setting neither tree-
like nor general resolution seems to be automatizable [2]
and that tree-like resolution is quasi-automatizable, mean-
ing that a refutation of size quasi-polynomial with respect
to the smallest possible can be found [6]. The following
definition seems an appropriate concept of automatization
for parameterized proof complexity.

Definition 6.1. We say that a proof system P for a pa-
rameterized language L is fpt-automatizable if there exists
an algorithm which for an instance (x,k) € L with a P-
proof of size s finds a P-proof for (x,k) of size at most
f(E)(s - |z)°D) where f is some computable function.

The notion of quasi-automatizability is meaningless in
the context of parameterized (tree-like) resolution. Every
(F,k) € PCon with |F| = n has a refutation of size
c- (kil) for some constant c. If k& < logn, then this is
smaller than n!°¢™ which is quasi-polynomial in n, other-
wise (1) < 2(k+1)” which is fpt with respect to k. Hence
for any (F,k) € PCon there exists a refutation of size
f(k)g(n) where f is some computable function and ¢ is
some quasi-polynomial function.

We are in the situation already discussed in [2] where we
want to prove non-automatizability for a system which is
indeed quasi-automatizable. Another difficulty is that non-
automatizability results in [1,2] all use formulas which are
interesting and meaningful on assignments of big weight. It
does not seem possible to use those techniques in our frame-
work.

Dag-like lower bounds for PHP. The combinatorial
game gives lower bounds for tree-like resolution, and it
could even be applied to stronger tree-like proof systems.
Nevertheless, such techniques are insufficient for dag-like
resolution lower bounds. The only techniques working in
this context are either based on width lower bounds or on ef-
ficient interpolation methods. Both use restrictions. Param-
eterized resolution has efficient interpolation and we can
easily prove appropriate width lower bounds for PHP. The
main problem is that in both cases restrictions cannot be ap-
plied without falsifying the parameterized axioms (i. e., for
less than k 1’s you cannot use many 1’s in the restriction).

References

[1] M. Alekhnovich, S. R. Buss, S. Moran, and T. Pitassi. Min-
imum propositional proof length is NP-hard to linearly ap-
proximate. J. Symb. Log., 66(1):171-191, 2001.

10

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]
[15]
[16]

(17]

(18]
(19]

(20]

(21]

M. Alekhnovich and A. A. Razborov. Resolution is not
automatizable unless W[P] is tractable. SIAM J. Comput.,
38(4):1347-1363, 2008.

P. Beame, J. C. Culberson, D. G. Mitchell, and C. Moore.
The resolution complexity of random graph colorability.
Discrete Applied Mathematics, 153(1-3):25-47, 2005.

P. Beame, R. M. Karp, T. Pitassi, and M. E. Saks. The effi-
ciency of resolution and Davis-Putnam procedures. SIAM J.
Comput., 31(4):1048-1075, 2002.

P. Beame, H. A. Kautz, and A. Sabharwal. Towards under-
standing and harnessing the potential of clause learning. J.
Artif. Intell. Res., 22:319-351, 2004.

P. Beame and T. Pitassi. Simplified and improved resolution
lower bounds. In Proc. 37th IEEE Symposium on Founda-
tions of Computer Science, pages 274-282, 1996.

E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near
optimal separation of tree-like and general resolution. Com-
binatorica, 24(4):585-603, 2004.

E. Ben-Sasson and A. Wigderson. Short proofs are narrow
- resolution made simple. Journal of the ACM, 48(2):149—
169, 2001.

M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johannsen. On
the relative complexity of resolution refinements and cutting
planes proof systems. SIAM J. Comput., 30(5):1462-1484,
2000.

M. L. Bonet and N. Galesi. Optimality of size-width trade-
offs for resolution. Computational Complexity, 10(4):261—
276, 2001.

S. A. Cook and R. A. Reckhow. The relative efficiency of
propositional proof systems. J. Symb. Log., 44(1):36-50,
1979.

S. S. Dantchev, B. Martin, and S. Szeider. Parameterized
proof complexity. In Proc. 48th IEEE Symposium on the
Foundations of Computer Science, pages 150-160, 2007.

J. L. Esteban, N. Galesi, and J. Messner. On the complexity
of resolution with bounded conjunctions. Theor. Comput.
Sci., 321(2-3):347-370, 2004.

J. Flum and M. Grohe. Describing parameterized complex-
ity classes. Inf. Comput., 187(2):291-319, 2003.

J. Flum and M. Grohe. Parameterized Complexity Theory.
Springer-Verlag, Berlin Heidelberg, 2006.

R. Niedermeier. Invitation to Fixed-Parameter Algorithms.
Oxford University Press, 2006.

P. Pudldk and R. Impagliazzo. A lower bound for DLL al-
gorithms for SAT. In Proc. 11th Symposium on Discrete
Algorithms, pages 128-136, 2000.

S. Riis. A complexity gap for tree resolution. Computational
Complexity, 10(3):179-209, 2001.

N. Segerlind. The complexity of propositional proofs. Bul-
letin of Symbolic Logic, 13(4):482-537, 2007.

B. Selman, H. A. Kautz, and D. A. McAllester. Ten chal-
lenges in propositional reasoning and search. In Proc. 15th
International Joint Conference on Artificial Intelligence,
pages 50-54, 1997.

G. Stalmark. Short resolution proofs for a sequence of tricky
formulas. Acta Informatica, 33:277-280, 1996.

Technical Appendix

The appendix contains all proofs that are omitted in the
main part of the paper.

Theorem 2.7. Let L. C ¥* X N be a parameterized lan-
guage. Then the following statements are equivalent:

1. There exists an fpt-bounded proof system for L.

2. There exists an fpt-bounded parameterized proof sys-
tem for L.

3. L € para-NP.

Proof. For the implication 1 = 2, let P be an fpt-bounded
proof system for L. Then the system P’ defined by
P'(y,k) = P(y) is an fpt-bounded parameterized proof
system for L.

For the implication 2 = 3, let P be an fpt-bounded pa-
rameterized proof system for L such that every (z,k) € L
has a P-proof (y, k') with |y| < f(k)p(|x|) and k&’ < g(k)
for some computable functions f, g and some polynomial p.
Let M be a Turing machine computing P in time h(k)g(n)
with computable /& and a polynomial ¢q. Then L € para-NP
by the following algorithm: on input (z, k) we guess a proof
(y, k") with |y| < f(k)p(|z|) and k" < g(k). Then we ver-
ify that P(y, k") = (x, k) in time h(k")q(|y|) which by the
choice of (y, k) yields an fpt running time. If the test is true,
then we accept the input (z, k), otherwise we reject.

For the implication 3 = 1, let L € para-NP and let M
be a nondeterministic Turing machine for L running in time
f(k)p(n) where f is computable and p is a polynomial.
Then we define the following proof system P for L:

(z, k) if w is an accepting computation
Pz, k,w) = of M on input (z, k)
(0, ko) otherwise

where (zo,ko) € L is some fixed instance. Apparently,
P can be computed in polynomial time. Moreover, P is
fpt-bounded as every (z,k) € L has a P-proof of size

O(f (K)p(|x)). O
Lemma 5.4. After the last stage f of the game the following
holds:

e a parameterized clause is falsified;
o [PY(N)I+[D*(f)l = VE+1.

Proof. For the first condition, we notice that Rules (1) and
(2) in the delayer’s strategy guarantee that neither antisym-
metry nor transitivity axioms will be ever falsified during
the game. Assuming that oy has weight strictly less then
k + 1, then by Lemma 5.3 (part 3), no predecessor clause is

11

falsified. Hence w(as) = k + 1 and a parameterized clause
is falsified.

The second property follows by Lemma 5.3 (part 1) and
by |E(ay)| > w(ay) whichis equal to k + 1 because of the
first part of this lemma. O

Lemma 5.5.
1 If|D;(f)| = 1, then sc;(f) > logn —log(2k + 1).
2. If [P} (f)| = 1, then sc;(f) > logn — log(k + 1).

Proof. For the first claim, let (4, j) € Dj(f) and let ¢; ;
be the stage when z; ; was set. We claim that \PJQ(tiyj)\ >
n — (2k + 1). W.1l.o.g. we can assume that the variables
x4 5 set to 0 by the prover are the first ones with end-node j
to be set to 0, because co(z;/ 5, o) is strictly decreasing with
respect to z; (). Hence the delayer gets at least

l
D log = =

points on variables 1 j, ..., Ty ;.

It remains to prove the claim that [PP(¢; ;)| > n —
(2k + 1). According to Rule (3) of the strategy, there are
at least n — (k + 1) variables x; ; set to 0 in v, ;. Hence
|PY(ti)| + [D3(tij)] = n — (k+ 1). Since at this stage
1 is the first predecessor of j to be fixed, then the delayer
has not set variables x;/ ; to 0 according to Rule (4), but
only by Rule (2). Moreover, for the same reason, if ¢’ is the
stage preceding ¢; ; we have that: |D9(t; ;)| = |D3(t')| =
|N;(t")| < k, where the last inequality holds by Lemma 5.3
(part 2). Then |P)(t; ;)| > n — (2k + 1).

We now show condition (2). Let ¢; ; be the stage in
which prover sets some x; ; to 1, and let @ be the partial as-
signment corresponding to that stage. W.1. 0. g. we assume
that all variables in P (t; ;) are set before any variable in
D? (ti,;), because co is monotone decreasing in the size of
the second argument. Fix p = |P}(t; ;). By Lemma 5.3
(part 2) we get |N;(t)| < k where t' is the stage preceding
t;,;. Hence we know that z;(c«) > n — k — p. The amount
of points got by delayer on vertex j is at least

logn — log(2k + 1)

% >logn —log(k+1) .

