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We discuss the complexity measure of resolution width, which will be the main
proxy measure we use to get size lower bound. We show that short proofs can be
made narrow, and we discuss the limits of this process. If time permits we prove
new size lower bounds based on width lower bounds, using formulas that have
certain expansion properties: random 3-CNF, Tseitin formulas, Pigeonhole
principles on graphs, and so on.

Width of a resolution refutation

Whenwe introduced resolutionwe defined thewidth of a clause/formula/proof
as the largest number of literals included in one of its element. Remember
that a refutation of width w is a refutation where each clause has at most w
literals (and where one clause has width exactly w).

Exercise 1. Show that if a formula φ has refutations of width w, then it is
possible to produce one such refutation in time nO(w). Such bound is tight,
indeed there are 3-CNF formulas with n variables with resolution refutation
width w and no refutation shorter than nΩ(w), no matter the width.1 1 Albert Atserias, Massimo Lauria, and

Jakob Nordstrom. Narrow proofs may be
maximally long. In Computational Com-
plexity (CCC), 2014 IEEE 29th Conference
on, pages 286–297. IEEE, 2014

It turns out that the study of the width is a great way to get size lower
bounds. The central result is the connection between size and width due to
Ben-Sasson and Wigderson.2 2 Eli Ben-Sasson and Avi Wigderson. Short

proofs are narrow - resolution made simple.
J. ACM, 48(2):149–169, 2001Theorem 2 (Ben-Sasson and Wigderson, 2001). Consider a k-CNF formula

φ of n variables that has a refutation of size S. Then φ has also a refutation
of width at most

k + O
(√

n ln S
)

.

In order to discuss the proof we need the following notation.

Definition 3 (Partial assignment). A partial assignment on a set of variables
x1, x2, . . . xn is a set {xi = bi}i∈I where I ⊆ [n] and bi ∈ {0, 1}. We denote
as dom(ρ) the set of assigned variables {xi}i∈I . Given a clause C, C�ρ is
> if there is some literal in C assigned to true by ρ, otherwise C �ρ is the
subclause of C obtained removing all literals assigned to false. The notation
is extended to any CNF.

Exercise 4. Consider a resolution derivation π of C from φ, where π. Show
that there is a resolution derivation π�ρ of C�ρ from φ�ρ so that

• π�ρ has at most the same length and width of π;

• each clause in π�ρ is a subset of some clause Ci�ρ where Ci is a clause in
π which is not satisfied by ρ.
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Exercise 5. Observe that for every partial assignment ρ there is a unique
minimal clause Cρ that is falsified by ρ.3 3 E.g. for the partial assignment

ρ = {x = 0, y = 1} we get Cρ = x ∨ ȳ.Consider a resolution derivation π of a clause C from a restricted CNF
formula φ �ρ. Assume π has length ` and width w. Show that there is a
resolution derivation from φ of some clause C′ ⊆ C ∨ Cρ, which has length
at most ` and width at most w + |dom(ρ)|.

Proof of Theorem 2. Proof in class. See the paper for reference.

Corollary 6. Consider a k-CNF formula φ of n variables. Let S the size
of the smallest refutation of φ, and let W be the smallest width among the
refutations of φ. Then it holds that

S ≥ exp

(
Ω

(
(W − k)2

n

))
.

In particular to prove a superpolynomial lower bound for the size of the
refutation of a k-CNF, with k = O(1), it is sufficient to show a width lower
boundω(

√
n). Wewill see later someΩ(n)width lower bounds forO(1)-CNF

formulas, which imply exponential lower bounds.

Exercise 7. Show that if a k-CNF φ has a tree-like refutation of size ST ,
then it has also a (possibly non tree-like) refutation of width k + log(ST).

The results in Theorem 2 and Corollary 6 raise two obvious questions.

1. In the proof of Theorem 2 the narrow proof we get is much larger that the
proof we started with. Is this necessary? Can we make the proof narrow
without blowing up the size?

2. To get a super polynomial lower bound we need ω(
√

n) width lower
bound. Can we improve the theorem and have lower bounds with weaker
width lower bounds?

The answer to both questions is NO (at least in general). In a recent work
Neil Thapen4 proved that there are formulas with both small size and small 4 Neil Thapen. A trade-off between length

and width in resolution. Technical Report
TR14-137, Electronic Colloquium on Com-
putational Complexity, 2014

width refutations, and but where we cannot keep both measures small simul-
taneously.

Theorem 8 (Thapen, 2014). Fix a small constant ε > 0. Take any sufficiently
large m such that both m and mε are powers of two. There is a CNF Φm with
Θ(m1+2ε) variables and Θ(m1+3ε) clauses, of width O(log m), such that

1. Φm has a refutation of length O(m1+3ε) and width m + O(log m);

2. Φm has a refutation of width O(mε);

3. Φm has no subexponential length refutation of width strictly less than m.

Using Theorem 2 and item 1 on Φm we get that the formula has a refutation
of width O(m1/2+ε log m). By item 3, though, when ε < 1/2 every such
refutation requires exponential length.
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Regarding the other question we refer to the work of Bonet and Galesi5 5 Maria Luisa Bonet and Nicola Galesi.
Optimality of size-width tradeoffs for
resolution. Computational Complexity,
10(4):261–276, 2001

where they build a formula with a small refutation which requires large width,
but just not so large that Corollary 6 would kick in.

Theorem 9 (Bonet and Galesi, 2001). There exists a 3-CNF over O(m2)

variables so that

• has O(m3) clauses;

• has a refutation of length mO(1);

• requires refutation width Ω(m).

The formula is a variant of the Ordering principle. The unsatisfiable CNF
encoding of this principle claims that a set of m elements can be partially
ordered ≺ so that every element has at least one predecessor. Variable xij

for i 6= j and i, j ∈ [m] encodes that the element i ≺ j. The clauses of the
ordering principle are.

x̄ij ∨ x̄ji for every distinct i, j ∈ [m]; (1)

x̄ij ∨ x̄jk ∨ xik for every distinct i, j, k ∈ [m]; (2)∨
i 6=j

xij for every j ∈ [m]. (3)

The clauses (1) and (2) ensure that the variables are encoding a partial
order, while the clauses (3) ensure that each element has at least a predecessor.
In (Bonet and Galesi, 2001) they actually prove a width Ω(m) lower bound
for the 3-CNF version of this formula.

Exercise 10. Show that the ordering principle introduced before has a refu-
tation of polynomial size and widthO(m). (Hint: from the ordering principle
of m elements, try to deduce the ordering principle of m− 1 elements.)

Width lower bounds

We are going to see some exponential size lower bounds for resolution refuta-
tion based on width lower bounds. In particular we will get exponential lower
bounds for

• random 3-CNFs;

• Tseitin formulas on expander graphs;

• sparse version of pigeonhole principle.

This section is based on (Ben-Sasson, Wigderson, 2001).6 In all the lower 6 Eli Ben-Sasson and Avi Wigderson. Short
proofs are narrow - resolution made simple.
J. ACM, 48(2):149–169, 2001

bounds the strategy is essentially the same. We need to show that

1. there is a clause in the proof that is minimally implied by a large set of
initial constraints;

2. the literals in that clause correspond to the “boundary” of those initial con-
straints, where the boundary is intended to arise from the graph structure
of the formula;
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3. if the graph is an expander, then the boundary must be large, and therefore
the width of the clause is large as well;

4. we use Corollary 6 to get a size lower bound.

We need the following lemma to count literals in a clause, and then get
width lower bounds.

Lemma 11. Let A1, A2, . . . , A` a set of clauses so that

• collectively, they logically implies a clause C;

• no strict subset of them logically implies;

thenC contains all variables that occur exactly once among clauses A1, . . . , A`.

Proof sketch. Consider a variable x occurring only in Ai. Without loss of
generality we assume x occurs positively. We want to show that literal x
occurs in C. Since by minimality {A1, . . . , A`} \ {Ai} does not imply C,
there is an assignment ρ that satisfies it, but simultaneously falsify C and
(consequently) Ai. Therefore ρ sets x to false. We consider ρ′ equal to ρ

but with x set to true. The value of the clauses {A1, . . . , A`} \ {Ai} does
not change, since they do not mention variable x. But now Ai is satisfied too
and therefore ρ′ must satisfy C. Clause C passed from false to true by only
changing the value of variable x from false to true. Therefore C contains
variable x.

Random 3-CNF

We consider random 3-CNFs over n variables and m = ∆n clauses (∆ is
called the clause density). The formula is sampled by sampling ∆n times
with repetition from the set of all 8(n

3) clauses.
Chvátal and Szemerédi showed that with high probability a random 3-

CNF sampled according to this distribution where ∆ is a constant larger than
8 ln 2, is unsatisfiable and requires exponential size refutations.7 The lower 7 Vašek Chvátal and Endre Szemerédi. Many

hard examples for resolution. J. ACM,
35(4):759–768, 1988

bound was extended to higher formula density in (Beame et al. 2002), and the
proof has been simplified and rephrased later in term of width lower bound
by (Ben-Sasson, Wigderson 2001).8 8 Paul Beame, Richard M. Karp, Toniann

Pitassi, and Michael E. Saks. The effi-
ciency of resolution and davis–putnam pro-
cedures. SIAM J. Comput., 31(4):1048–
1075, 2002; and Eli Ben-Sasson and Avi
Wigderson. Short proofs are narrow - reso-
lutionmade simple. J. ACM, 48(2):149–169,
2001

To study this formula we need to study the underlying bipartite graph struc-
ture.

Definition 12 (Bipartite matchability and expansion). Consider a bipartite
graph G = (V, U, E). For any V′ ⊂ V we define

N(V′) = {u ∈ U|(v, u) ∈ E, v ∈ V′} (neighborhood) (4)

∂V′ = {u ∈ U||N(u) ∩V′| = 1} (boundary) . (5)

A bipartite graph is a (r, ε)-boundary expander9 if for every V′ of size be- 9 There are several notions of boundary ex-
pansion in literature, they are similar but not
entirely equivalent. In particular (Beame et
al. 2002) use a different, but equivalent con-
cept in their paper.

tween r/2 and r, |∂V′| ≥ c|V′ |
2 . A bipartite graph is matchable up to r

vertices if for every V′ with at most r vertices, |N(V′)| ≥ |V′|.
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Exercise 13. Show that if the left side had degree 3, then

|∂V′| ≥ 2N(V′)− 3|V′| . (6)

We are going to consider the formula as a bipartite graphs. For a CNF
φ =

∧m
i=1 Ci over variables x1, x2, . . . , xm we consider the biparite graph

Gφ([m], [n], E) where (j, i) ∈ E if clauses Cj contains either the literal xi or
the literal x̄i. A random 3-CNF formula induces a random bipartite graph of
degree 3 on the left side. Such graph has good expansion and good matcha-
bility, accoding to the following claim that we don’t prove.

Proposition 14 (Lemma 11 in Beame et at. 2002). For any 0 < ε < 1 there
is a constant cε > 0 so that for a random 3-CNF φ over n variables and
m = ∆n ≥ n clauses the following holds. If r ≤ cεn · ∆−

2
1−ε then with high

probability in r the graph Gφ

• is a (r, ε)-boundary expander;

• is matchable up to r vertices.

From these characteristic of the graph we get the width lower bound.

Theorem 15. For any 0 < ε < 1 there is a constant cε > 0 so that for a
random 3-CNF φ over n variables and m = ∆n ≥ n clauses the following
holds. With high probability φ is unsatisfiable and requires a refutation of
width Ω

(
n · ∆−

2
1−ε
)
.

Proof Sketch. Fix r = cεn ·∆−
2

1−ε as in the statement of Proposition 14. For
every clause C in the refutation we define a complexity measure µ, which
is size of the smallest set of initial clauses of φ that implies C. Measure µ

satisfies:

• µ(C) = 1 when C is an initial clauses;

• subadditivity, namely if C is derived by A and B, then µ(C) ≤ µ(A) +

µ(B);

• µ(⊥) > r because Gφ is matchable up to r vertices on the left side, any
set of r clauses are satisfiable.

For these reasons there must be in the proof a clause C with r
2 ≤ µ(C) ≤ r.

Consider any such clause C and let be V′ ⊆ [m] the indices of the clauses
that minimally imply C. The key step is to show that clause C must contain
one literal per edge in the boundary of V′. By expansion we get that C has
width ε|V′| ≥ εr/2.

Corollary 16. Consider any 0 < γ ≤ 1/4 and take a random 3-CNF φ

over n variables and ∆n clauses with ∆ ≈ n1/4−γ. With high probability φ

requires a refutation of size at least

exp(Ω(n
4γ−ε
1−ε )) (7)

for every 0 < ε < 4γ.
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Some observations on this results: for γ > 0 we can still get lower bound
exp

(
nΩ(1)), and in particular for unsatisfiable random 3-CNF with O(n)

clauses resolution needs exponential size refutations with high probability.
This result implies that random 3-CNF with n5/4−γ clauses require su-

per polynomial refutations. In (Ben-Sasson and Galesi, 2003)10 they show 10 Eli Ben-Sasson and Nicola Galesi. Space
complexity of random formulae in resolu-
tion. Random Struct. Algorithms, 23(1):92–
109, 2003

a stronger bound for tree-like resolution which excludes no polynomial size
refutations for n2−γ clauseswhich essentiallymatches a tree-like upper bound
in (Beame et al. 2002). In Eli Ben-Sasson’s PhD Thesis the results have been
further improved. He shows stronger width lower bounds for random 3-CNF,
and obtain consequently a superpolynomial size lower bound for resolution
refutations of random 3-CNF with up to n3/2−γ clauses.11. 11

Open Problem 17. Does such lower bound hold for general resolution as
well? Nothing excludes that random 3-CNF formulas may be hard for reso-
lution even at n2−γ clauses.

Interestingly enough around n3/2 clauses it is possible to use spectral anal-
ysis and that can refute random 3-CNF in polynomial time with high proba-
bility. These techiques are definitely different from resolution.

Exercise 18. Use the statements in Exercise 7 and in Proposition 14 to prove
that for any 0 < γ ≤ 1/2 and a random 3-CNF φ over n variables and ∆n
clauses with ∆ ≈ n1/2−γ requires a refutation of size at least

exp(nΩ(1)) (8)

with high probability.

Graph Pigeonhole Principle

The graph pigeonhole principle is a variant of the pigeonhole principle for-
mula. In this case each pigeon can only go in one among a restricted set of
holes. The structure of this formula is naturally expressed as a bipartite graph
G = (P, H, E), so the that clauses are∨

j∈N(i)

pi,j for every i ∈ P; (9)

p̄i,j ∨ p̄i′ ,j for every distinct i, i′ ∈ P and j ∈ N(i) ∩ N(i′). (10)

Theorem 19. Assume that {Gn = (P, H, E)}n∈N is a bipartite graph family
such that

• |P| = n + 1 and |H| = n;

• each pigeon in P can go in at most O(1) holes;

• G is matchable up to αn vertices, for some α > 0;

• G is an (βn, Ω(1))-boundary expander, for some β ≤ α.12 12 In the original paper they use a different
notion of expansion, but Definition 12 will
do here.
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The graph pigeohole principle formula over G is unsatisfiable but it requires
resolution refutation of width Ω(n), and therefore exponential size refuta-
tions.

Proof. We will see the proof in class.

Such graphs exist, and indeed these features hold with high probability in
a random bipartite graph with left degree 3, n + 1 vertices on the left and n
vertices on the right.

Exercise 20. Use the previous result to give another proof of a 2εn lower
bound for the size of resolution refutations of the standard pigeonhole prin-
ciple.

Exercise 21. Prove that the standard pigeonhole principle has a refutation
of width O(n). Deduce that it is not possible to get a refutation size lower
bounds using Corollary 6 directly.

Tseitin formula

We start with a connected graph G in which each vertex is labeled by {0, 1}
value. A labeling is odd if the sum of the values over all vertices is odd. A
labeling is even otherwise. The Tseitin formula claims that it is possible to
put a {0, 1} value on each edge of the graph so that the sum of the values on
the edges incident to a vertex is equal (mod 2) to the value on the vertex.

Example 22. Consider a triangle graph on vertices u, v, w, labeled respec-
tively by 1, 0, 0, respectively, and edges euv, evw, ewu. The formula has one
variable per edge, and it claims that the following linear system is satisfiable.

euv + ewu = 1 (mod 2)

euv + evw = 0 (mod 2)

evw + ewu = 0 (mod 2) .

Any parity constraint over d variable can be encodedwith 2d−1 clauses, there-
fore the final CNF is

euv ∨ ewu

ēuv ∨ ēwu

ēuv ∨ evw

euv ∨ ēvw

ēvw ∨ ewu

evw ∨ ēwu .

Exercise 23. Prove that for every connected graph G, the Tseitin formula is
satisfiable if and only if the sum of the labels on all vertices is even. Show that
when it is not satisfiable, it is always possible to satisfy any set of |V(G)| − 1
parity constraints.

For the sake of this result we will use a different notion of expansion over
graphs.
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Definition 24 (Graph edge expansion). Consider a graph G = (V, E). For
any S ⊆ V we define the edge boundary of a set of vertices as

e(S, S̄) = {{u, v} ∈ E|u ∈ S, v ∈ S̄}, (11)

and we define the edge expansion e(G) of a graph as the minimum, among
all subsets S of vertices with 1

3 |V| ≤ |S| ≤
2
3 |V|, of

e(S, S̄)
|S| . (12)

A graph is an edge expander if e(G) = Ω(1).

In literature it is possible to find connected d-regular graph with constant
edge expansion, for d ≥ 3 (See the survey on expander graphs 13). Any such

13 Shlomo Hoory, Nati Linial, and Avi
Wigderson. Expander graphs and their
applications. Bull. Amer. Math. Soc.,
43(4):439–561, 2006graph then induced an exponentially hard formula for resolution, as proved

originally in (Urquhart, 1987).14.
14 A. Urquhart. Hard examples for res-
olution. Journal of the ACM (JACM),
34(1):209–219, 1987

Theorem 25. Consider a d-regular edge expander graph G over n vertices,
and pick any odd labeling of its vertices. The corresponding Tseitin formula
φ is unsatisfiable and any refutation requires Ω(n) width.

Proof sketch. For every clause C in the refutation we define a complexity
measure µ, which is size of the smallest set of initial parity constraints of φ

that implies C. Measure µ satisfies:

• µ(C) = 1 when C is an initial clauses;

• subadditivity, namely if C is derived by A and B, then µ(C) ≤ µ(A) +

µ(B);

• µ(⊥) = n because all sets of n− 1 parity constraints are satisfiable.

For these reasons there must be in the proof a clause C with n
3 ≤ µ(C) ≤

2
3 n. Consider any such clause C and let be S ⊆ V(G) the set of vertices
which parities minimally imply C. The key step is to show that clause C
must contain one literal per edge in in E(S, S̄). By expansion we get that C
has width Ω(|S|) = Ω(n).
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